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FOREWORD

Mathematics HL (Option): Calculus has been written as a companion book to the Mathematics HL
(Core) textbook. Together, they aim to provide students and teachers with appropriate coverage of
the two-year Mathematics HL Course, to be first examined in 2014.

This book covers all sub-topics set out in Mathematics HL Option Topic 9 and Further Mathematics
HL Topic 5, Calculus.

The aim of this topic is to introduce students to the basic concepts and techniques of differential and
integral calculus and their applications.

Detailed explanations and key facts are highlighted throughout the text. Each sub-topic contains
numerous Worked Examples, highlighting each step necessary to reach the answer for that example.

Theory of Knowledge is a core requirement in the International Baccalaureate Diploma Programme,
whereby students are encouraged to think critically and challenge the assumptions of knowledge.
Discussion topics for Theory of Knowledge have been included on pages 129 and 140. These aim to
help students discover and express their views on knowledge issues.

The accompanying student CD includes a PDF of the full text and access to specially designed
graphing software.

Graphics calculator instructions for Casio fx-9860G Plus, Casio fx-CG20, TI-84 Plus and TI-nspire
are available from icons located throughout the book.

Fully worked solutions are provided at the back of the text, however students are encouraged to
attempt each question before referring to the solution.

It is not our intention to define the course. Teachers are encouraged to use other resources. We have
developed this book independently of the International Baccalaureate Organization (IBO) in
consultation with experienced teachers of IB Mathematics. The Text is not endorsed by the IBO.

In this changing world of mathematics education, we believe that the contextual approach shown in
this book, with associated use of technology, will enhance the students understanding, knowledge
and appreciation of mathematics and its universal applications.

We welcome your feedback.
Email: info@haesemathematics.com.au CTQ CS

Web: www.haesemathematics.com.au RCH PMH
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The authors and publishers would like to thank all those teachers who offered advice and
encouragement on this book, with particular mention to Peter Blythe.



USING THE INTERACTIVE STUDENT CD

The interactive CD is ideal for independent study.

Students can revisit concepts taught in class and undertake their own revision
and practice. The CD also has the text of the book, allowing students to leave
the textbook at school and keep the CD at home.

By clicking on the relevant icon, a range of interactive features can be
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SYMBOLS AND NOTATION USED IN THIS BOOK
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lim f(z)

r—a

lim f(z)

r—a+

lim f(x)
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max{a, b}
o0
S oepa
n=0

dy
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f(z)
d?y

da?

1 (z)
d"y

dan
f™ ()
f y dx

fabydm

ez

Inx
sin, cos, tan

csc, sec, cot

arcsin, arccos, arctan

Az, y)
[AB]
AB

~

A

CAB or £CAB

AABC

I
i

the limit of f(z) as z tends to a

the limit of f(z) as z tends to a from the positive side of a
the limit of f(z) as z tends to a from the negative side of a
the maximum value of a or b

the power series whose terms have form ¢, 2"

the derivative of y with respect to x

the derivative of f(z) with respect to z

the second derivative of y with respect to x

the second derivative of f(z) with respect to
the nth derivative of y with respect to x

the nth derivative of f(z) with respect to z

the indefinite integral of y with respect to x

the definite integral of y with respect to = between the
limits z=a and =z =5

exponential function of =

the natural logarithm of x

the circular functions

the reciprocal circular functions

the inverse circular functions

the point A in the plane with Cartesian coordinates = and y
the line segment with end points A and B

the length of [AB|

the angle at A

the angle between [CA] and [AB|

the triangle whose vertices are A, B, and C

is parallel to

is perpendicular to






CALCULUS 9

e NUMBER PROPERTIES

IMPORTANT NUMBER SETS

You should be familiar with the following important number sets:

o 71t =1{1,2,3,..} is the set of positive integers.
e N=1{0,1,2,3, ...} is the set of natural numbers.
o Z={..,-2,-1,0,1,2, ..} is the set of integers.

e (Q is the set of rational numbers. These are numbers which can be expressed in the form P where

P, qE€Z, q#0. ?

e R is the set of real numbers comprising the rational numbers Q, and the irrational numbers which
lie on the number line but cannot be expressed as a ratio of integers.

The number sets follow the hierarchy Zt* CNCZ C Q C R.

In this option topic we will be principally concerned with the set R. Rigorous treatments of the algebraic
and set theoretic properties of R, such as the fact that R is a continuous set, are available in a variety
of calculus and analysis books. However, we will outline here only those results of most immediate
relevance to our work with limits, sequences, and series.

A closed interval consisting of all real numbers from a to b inclusive is denoted [a, ).

[a, b] is {z|a <z <b} _ﬁb_
a

An open interval consisting of all real numbers between a and b is denoted ]a, b].

Ja,b| is {z|a<az<b}. _ijl;_

THE ABSOLUTE VALUE FUNCTION

For any a € R, the absolute value of a, denoted by |al,
is defined by:

la| = a ifa=>0
al = —a if a<0

y=|x|

The absolute value |a| of a number a € R is the distance from a to the origin on the real number line.
More generally, the distance between two numbers a, b € R on the number line is given by |a — b|.
The absolute value function has the following properties:

1 |a| >0 forall a€R.

2 |-a|=|a| forall acRR.

3 |ab| =|a||b] forall a,beR.

4 g=|a| or —|a|, and hence —|a|]<a<|a] forall a€R.

5

If ¢>0 then |a|]<c¢ ifandonlyif —c<a<e
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We will also need the property of real numbers that:
If a<c and b<d, then a+b<c+d, for a,b, c deR.

Proof of Property 5:

= Suppose that |a| < c. For a proof “if and only if”

Since a < |a| and —a < |a|, wefind a < |a] < c and —a < |a| < ¢ | WEPOVE it one way =
and then the other <=.
a<c and —a<ec

But —a < c¢ is equivalent to —c < a, so combining the two \
inequalities we have —c < a < c. ’

< If —c<a<ec then a<c¢ and —c<a.

—a < c. A

since |a| =aor —a, |a| <ec

THE TRIANGLE INEQUALITY

The Triangle Inequality states:

Forany a,b€R, |a+b|<|a|+ bl

Proof:
From Property & we have —|a|<a<|a|] and —[b|<b< b forall a,beR.
Adding these inequalities gives —(|a| +|b]) < a+b < |a| + |b].
Using Property 5 with ¢ = |a| + |b|, this is equivalentto |a + b| < |a| + |b].
Corollaries:
1 |a—0b|<|a|+ b forall a,beR.
2 |a|—|b| <|a+b forall a,beR.
3 la|]—|b|<|a—0b] forall a,beR.
Proofs:

1 By the Triangle Inequality, we have |a+c| < |a| +|c¢| forall a, c€R.
letting ¢ = —b, we get |a—b| <|a|+|-b] forall a,beR.
la — 0] < |a] + [b]
2 la| = |(a +b) + (=b)|
la| <|a+0b]+|=b] forall a,beR by the Triangle Inequality.
la] = [b] <'la +b|
3 la] = [(a —b) + 9]
la| <|a—0b|+1]b] forall a,beR by the Triangle Inequality.
lal = [6] < |a — b|
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EXERCISE A

I I -

10

1

Prove that [a| >0 forall ac€RR.
Prove that |—a| =|a| forall a€R.
Prove that |aj + ag + .... +an| < |ag| + |az| +....+|a,| forany a4, as, ..., a, € R.

If a<z<b and a<y<b showthat |z—y|<b—a.
Interpret this result geometrically.

Prove that |a —b| < |a —c| + |c—b).
Prove that if |z —a| < g then x> g

If |[z—a|<e and |y—bl<e showthat |(z+y)— (a+Db)|<2e.

The Archimedean Property states that for each pair of
positive real numbers a and b, there is a natural number n

such that na > b.

. o The properties of R in
Use the Archimedean Property to prove that for each positive

questions 8 and 9 are

. 1
number ¢ there is a natural number n such that — < €. needed later in the course.

n

Prove the Bernoulli Inequality by mathematical induction:
If ©>—1 then (14+2)">1+4nz forall neZt.

The Well-Ordering Principle states that every non-empty
subset of Z™ has a least element.

Show that the Well-Ordering Principle does not apply to R™,
the set of positive real numbers.

If r # 0 is rational and x is irrational, prove that r+x and
rx are irrational.

For questions 10 and 11 you will need
to write a proof by contradiction.
For help with this, consult
Appendix A: Methods of proof.

\
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8] LIMITS

Consider a real function f(z) whose domain D is a subset of R. ("t oo 2 — oo

We can write  f: D — R. refers to positive values of x
becoming increasingly large.

We wish to examine the behaviour of the function:

e as x approaches some particular finite value a € R, so =z —a

e as z tends to infinity or negative infinity, so = — oo or z — —o0,
when D =R.

We shall work with the following informal definition of a limit of a function. For more information,
consult Appendix B: Formal definition of a limit.

Let a € R be a fixed real number. Let f be a function defined in an open interval about = = a,
except f(a) need not be defined. We say the number [ is the limit of f as x approaches a, provided
f(z) becomes as close as we like to [ by choosing values of z close enough, but not equal to, the
number a. We write ;13}1 flz)=1.

From this definition, we see that f(z) gets closer and closer to [ as x gets closer and closer to a, from
either side of a.

If the function does not approach a finite value [, we say the limit does not exist (DNE).

If f(x) gets closer and closer to [ as x gets closer and closer to a from the right of a (where = > a),
we say “z approaches a from the right”, and write lim+ flz)=1.

If f(z) gets closer and closer to [ as x gets closer and closer to a from the left of a (where x < a), we
say “x approaches a from the left”, and write lim f(z)=1.

r—a

For a € R, lim f(z) exists if and only if both lim f(z) and lim+ f(z) exist and are equal.

r—a T—a~ T—a

In this case lim f(z) = lim f(z) = lim+ f(z).

For example:

° yh i:rrll (x+1)=2
2 2R ! In this case f(1) can be evaluated
1 directly, but we do not do this.
Instead, when calculating limits we
/ e consider the behaviour of
- 1 > f(z) for z close to 1.
Y )
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-1 . ..
Yy = z T s not defined at x = 1. This is not a

problem, since in determining the limit as x approaches
1, we never let = actually reach the value 1. But as we
make x very, very close to value 1, we can make f(x) as
close as we like to value 2.

2 _
fig T = Jim BT inee 2 £1)

—limlm+1
=2
Y As x — 17,
As z — 1T,

f(2) — —s.
f(@) = oc.

There is no finite real number that f(x) approaches as x
approaches value 1, so the limit of f as = approaches 1

-1 does not exist (DNE).
So, lim DNE.
r—1 xr —
z+1, =<1 Ay
Consid =
onsider f(x) {xz, 21
As x — 17, f(z) — 2 and so xlinll— flz) =2. y=f(z)
As x — 17, f(z) —» 1 and so lim f(z) =1
z—1 ) S
Since lim f(x) # lim+ f(z), there is no unique ! /
r—1— rz—1 < H >
value which the function approaches as = — 1. e v z
lim f(x) DNE.
r—1
Ly We can make f(x) as close as we like to value 5 by

T —
o=
]Y

making x large enough.

We write lim f(xz) =5".
r— 00

As x — oo, f(x)— 5 from below.

> Similarly, as « — —o0, f(z) — 5 from above.
y=o-7 We write lim _ f(z) =5".
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By examining the graphs of y =z, y= l, and y= i, establish the following limits:
x

22
. . 1 . 1 . 1
a lim x DNE b lim —=0 ¢ lim - =0 d lim = DNE
T— 00 T—00 T T—00 T z—0 T
a YA b Y
y==
v
As 2 =00, y=x—00 As 700, L0t
lim x DNE.
T— 00 . 1
lim = =0.
T—00 T
C d
Y
/
A 1 " L1
S T — 00, —QHO As z— 0", ;Hoo
1 1
lim = =0 As ©—0", — — —o0
z—00 X2 Z
lim = DNE

EXERCISE B.1

1 By examining the graphs of y = —x, y = —l, and y = establish the following limits:
X

_m_2’

a lim (—z) DNE b lim (—l>=o ¢ lim (—i)zo d lim (—1) DNE
x

T—00 T—00 x T—00 x2 z—0
2 Sketch each function and determine the existence or otherwise of lim f(z).
r—a
22tz —2
T 42

a=—2

>

a f(r)=3x+2, a=-1 b f(x)=

ol

, <
s

sinxz, x>
3 a Sketch the function f(z)= { 2

R

b Hence determine lim f(x) and 1im+ f(z).

T3 T3
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¢ Determine the existence or otherwise of lim f(x).

JZHE
4 a Sketch the function f(z)= = * 1
= —
b Determine the existence or otherwise of:
i lim f(z) il lim f(z) ili lim f(z)
T— — 00 T— 00 r—1
:132, >3
5 Let f(z)=<¢ 5, x=3
3, x<3.
a Sketch the graph of y = f(x). b Evaluate lim f(z) and lim+ f(x).
r—3~ r—3
¢ Does ling f(z) exist? Explain your answer.
6 Does lirrb Vo exist? Explain your answer.
7 For each of the following functions, discuss the limits:
i il ili i
lim f(z) Jlim f(x) lim £ ()
i 0
(x—1)3, r <0 sinx, T <
a = b = 2 _
@) {1, x>0 f(@) %, x>0

¢ f(z)=sin (%) T #0

THE LIMIT LAWS

We often define new functions using a sum, composition, or some other combination of simpler functions.
The limit laws help us calculate limits for these new functions using what we already know about the
simpler functions. For information about proving these laws, consult Appendix B: Formal definition of
a limit.

If f(x)=c aconstant, where c € R, then lim f(z)=limec=¢, forall a €R.

r—a r—a
We can state the limit laws as follows:

Consider real functions f(z) and g(z) for which lim f(z) =1 and lim g(z) =m,

r—a

where a, [, m € R.

e lim cf(z) =cl forany constant ¢ € R

o lim (f(x)+g(z))=1l+m

o lim f(z)g(x) =1Im

e lim (M) L provided m # 0
z—a \ g(x) m

e lim f(z)"=I" forall ne€Z"
r—a

o lim {/f(z) =1 forall ncZ* provided I >0

r—a
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From the first limit law we see that multiplying by the constant 1 will not change the value or existence
of a limit. When evaluating many limits, it often helps to multiply by 1 in a well-chosen form. We will
use this technique for rational functions.

RATIONAL FUNCTIONS
f(z) is a rational function if it can be written in the form f(x) = %, where p, g are real polynomials.
q\xr

Suppose =™ is the highest power of x present in either p or q.

To examine lim p@) or lim M, we divide all terms in the numerator and denominator by ™.
z—oo q(x) z——o0 q(x)
L L
im 2@ _ iy 2@ 5T Giee T 1 forall # 0 and multiplying by the constant 1
z—oo0 q(z) z—o0 q(T) 1 1
™ ™

does not change the value of the limit.

. . . . . 1
For rational functions, this allows us to make use of the known limits hrin — =0 forall meZ*.

z—+oo ™

Determine the existence or otherwise of the following limits:
. 5 . 1022 — 5 . z 1
a lim —=2t° b lim —2 2 ¢ lim Z*+2F
r—o00 =222 +x + 1 r—o00 32+ +2 T— 00 xr— 2
5 . 1022 — 5
a i b li w
r—o0 =222 4+ x+ 1 r—00 3x2 + 1+ 2
1 1
. = 1022 — =
= lim Dr D x 2= _ ol 0 et
z—oo —2x2+x+1 1 z—o0 3x2 4+ +2 1
2 x2
= lim T - = lim T 5
— —
T—0o0 2+;+x—2 z Oo3+5+m—2
_ 10
=L {as 200, 1 -0 and & — 0} =3
=0
1 1,1
. 2?+az+1 . 2?4zl Itgtom
¢ li = lim 5 X — = lim —
As x — oo, the numerator — 1, but the denominator — 0.
2+ +1
Hence as © — oo, —— — 0.
r — 2
2
. 1
lim 2 *t2+1 pNE.
T—00 r—2
EXERCISE B.2
1 Evaluate the following limits, where possible:
. 1 . 1 . 243z -4
a hm L b hm L C hm w
z—1 22 — 22 — 3 z——1 22 — 22— 3 t—0 x—1

2
. 3z —4 . 1 1 1 . 1 1 1
d lim w e lim —(=—2= f lim —(=-—-=
z—1 z—1 y—2y—5\y b y—5y—5\y b
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2 Evaluate the following limits, where possible:

a  lim Inx b i sinx ¢ lim sinx
z—2— V2 —T z—0 et z—n— 1 —cosx
d lim cosf e li tan
6—0 0 T — Secx
I*)E
3 Evaluate the following limits, where possible:
.3 422 — 5z 41 . 243 1
a lim 2% b lim 4o bz t1 ¢ lim /%* d lim — %
r—oo x+ 5 z—oo0 a2 4xz+1 T—00 x z—oco0 r2 +x+1

N
4 By first multiplying by VT AT find  lim V2t -

\/m2—|—m+m’ T—00
\/x2+:r+a:

-—— =1,forxz #0.
- ’

5 Let f be a function with domain R, and let a, [ € R be constants. Suppose hm f x) exists.

Use the limit laws to prove that lim f(z) =1 ifand only if lim (f(x)— l) =
r—a r—a

THE SQUEEZE THEOREM

The Squeeze Theorem shows us that inequalities between functions are preserved when we take limits.

Let f, g, h be real functions and let a, l € R.
Suppose that  f(z) < g(z) < h(z) for all z # a in some open interval containing a.

If lim f(z) =1= lim h(z) then lim g(x)=1.
r—a r—a r—a
So, a function g(x) is forced to have the same limit as f and h if g is squeezed between them.

. 9
Use the Squeeze Theorem to evaluate lim 22 cos (—)
T

z—0

Since —1 < cos (E) <1 forall z €R,

x

9
—z? < 22 cos (—) < x>
xr

Now lim —z? =0 = lim 2.

z—0 z—0

by the Squeeze Theorem, lim 2 cos (2) =0
g

z—0
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Consider the limit lim >~ Since lim sinz =0 and lim z = 0, we say this limit has indeterminate

z—0 T x—0 r—

form %. We cannot use the limit laws to determine whether or not this limit exists, or what its value

might be. However, one way to evaluate the limit is to use the Squeeze Theorem.

sin 6
The Fundamental Trigonometric Limit is é}ir% ) =

Consider the unit circle with angle 0 < 0 < %,
and also points P(cos#é, sinf), Q(cos¥, 0),
R(1, 0), and S(1, tanb).

Proof:

Clearly, area of AOPQ < area of sector OPR < area of AORS

1 . 1 1 sinf
5cosfsinf < 50 < 5 p—
Since 0 <6 <%, 1sinf>0
0 1 . L
cosf < i {dividing by 3 sin6}
Colse > 3129 > cosf {taking reciprocals}
cosh < 20 1 {rearranging}
0 cos 6 sing
in 6 1
Let f(0) =cosf, g(0) =22, h(f)=—.
ot () =cost, g(0) =20 n(o)= L
Now lim f(f)=1 and lim =1
0—0+ §—0+ cos@
sin 6
=1 S Th
o = {Squeeze Theorem}
For —% <60 <0, sin(—f#) = —sinf and cos(—f) = cosf
lim sin 0 — lim sin(—|6])
0—0— 0 0—0- —|6]
_ —sin(|6])
o—ot  —I0]
— lim sin 0
9o+ 0
=
So, lim 32 _q — jjy 0O
6—0— 0 6—ot 6
lim sinf _ 1 as required.

6—0 0
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EXERCISE B.3

1 Use the Fundamental Trigonometric Limit glm 27 — 1 and the limit laws to determine the
—0
following limits:

. sin?0 . sin30 . 0 . sin7

a lim = b lim = ¢ lim d lim 22
6—0 6 6—0 6 #—0 tanf z—0 4z

2 .

e lim xcotx f w' t g lim el

z—0 z—0 sin2x r—0+ /T

2 Evaluate the following limits, where possible:

1
a lim 25T by multiplying by =
z—0 x —sinz 1
. cosh—1 S cosh +1
b }lLlir}) — by multiplying by oo ht1
. l—cosz S 1+ coszx
< ;1_% —= by multiplying by T oma”
3 Use the Squeeze Theorem to prove that lin%J g(x) =0 for:
r—
a g(z) =a%cos (&) b g(z) =wsin (1)
1
< g(:z:):e(_w)sin:z: d g(x)= |m|4
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sl CONTINUITY OF FUNCTIONS

We have seen that different functions define curves with particular properties:

e curves which continue indefinitely, such as polynomials, y = €*, y = /z, y =Inz, y =sinz,
Yy = CcosT

21
e curves with a break or ‘hole’ at a particular value, for example y = m—l has a ‘hole’ at x =1
- —

. . 1
e curves with two or more branches which are not connected, for example y = ~.
€T

We now formalise this intuitive idea of a function being either continuous on its whole domain, or
discontinuous at a particular value.

Consider a real function f defined on an open interval containing the value a. We say that
f is continuous at z =a if lim f(z) = f(a).
r—a

If f is continuous at x = a for all a € R, we say f is continuous on R.

Thus for a function f to be continuous at = = a, the following three conditions must be satisfied:

1 f(a) needs to be defined

2 lim f(x) mustexist,so lim f(z) and lim+ f(z) must both exist and be equal
r—a rz—a~ r—a

3 lim f(z) = f(a).
r—a
If any of these three conditions fail, we say that f is not continuous at = a,
or f is discontinuous at x = a,
or f has a discontinuity at = = a.

Graphically, the points of discontinuity of a function f are points where the graph of y = f(z) has

a ‘hole’ such as a missing point, a ‘jump’ in the value of the function, or a ‘break’ such as a vertical
asymptote.

Suppose the function f is discontinuous at * = a.

If lim f(x) exists, then f has a removable discontinuity at = = a.
r—a

Otherwise, f has an essential discontinuity at =z = a.

A removable discontinuity is “removed” by defining a new function based on f but which is continuous
when x = a. In particular, when x = a it takes the value lim f(x).

r—a

Essential discontinuities are characterised by ‘jumps’ or ‘breaks’ in the graph of the function which cannot
be removed by simply redefining the value of the function there.
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Discuss the continuity of the following functions:

1 1, x>0
= b =
2 fo) =L so={" 120
a Ay b iy
L y=1@
- < =
o1
=5 v
A
f is not defined at = =5, and f is defined for all z, but there is a ‘jump’
lim5 f(x) DNE. discontinuity at x = 0.
f is continuous for all x € R, z # 5. xlin(()l— f(z)=-1 and xli%ﬂ flz)=1

f has an essential discontinuity at

=5 ;13%] f(z) DNE.
f is continuous for all z € R, z # 0.

f has an essential discontinuity at
z = 0.

Example 5

Discuss the continuity of the following functions. If there is a removable discontinuity, describe
how this could be removed.

2 sin x
af(a;):{gg’ zfg bf(x):{ . 70
> o 0, 75 = (0)
a m f is defined for all z, but there is a discontinuity at
=2
Oy =fla) lim f(z)=4 and lim f(z) =4
i r—2" r—2
4 ,,,,,,,,,,,
lirn2 f(z) =4
But 111112 f(z) # f(2), so there is a removable
= 2 C discontinuity when x = 2.
Y

f is continuous for all z € R, x # 2.
The discontinuity can be removed by defining a new function based on f, but which is
continuous at x = 2.

2

2

This is g(z) = {i , TF ; which is actually just g(x) = z2.
& x =
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b y f 1is defined for all z, but there is a discontinuity at
1 z = 0.
y=i@) L f@)=1 and lm fl)=1
lim f(z) =1
- @ ; z—0

But lin% f(z) # f(0), so there is a removable
T—

discontinuity when x = 0.
\j

f is continuous for all x € R, = # 0.

The discontinuity can be removed by defining a new function based on f, but which is

{sinw’ :C#O

continuous at = 0. Thisis g(z)=4¢ =

1, z = 0.

EXERCISE C.1

1 Suppose f and g are functions which are continuous at x = a. Use the limit laws to prove that
the following functions are also continuous at = = a:

a f(z)g(x) b f(z)£g(x) c —chéz;, for g(a) #0
d cf(z), for ¢€R a constant e [f(@)]™, nezZt
2 Consider the function f with graph: A
6
a Complete the following: 4
i f has an essential discontinuity
at x = ... - 1
ii  f has a removable discontinuity v =6
at x = ...
b For which values of z € R is f continuous?
(T, r< =2
2> -6, —2<2<0
3, 0<z<3
3 Let f(z)= {6, x=3
> , 3<x<4
4—x
\ 22, x> 4.
a Sketch y= f(x).
b Discuss the continuity of f where:
i x=-2 ii =0 iii =3 iv z=14

4 Discuss the continuity of the following functions. If there is a removable discontinuity, describe
how this could be removed.

2
, >3
v 22 10z +7 z3>3
a f(z)=¢5 x=3 b g(z)=
5, <3
3, <3
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5 Find, if possible, the value(s) of k£ € R for which f is continuous on R. Explain your working.

23 —1 sin 3z
1 , 0
a f(a:):{a:—l’ z 7 b f(a:):{ = °7
k, z=1 k, T =
1
k+1, <2 )= x>0
¢ ={ut ) R

kx, =>0 k+z, x>2
¢ f(x)_{o, z<0 ff("“')_{|k+2|, r <2

6 For areal function f with domain D, an alternative (equivalent) definition of continuity is as follows:
“f is continuous at a € D if, for any sequence {x,} of values in D such that

lim z, =a, then lim f(z,)= f(a).”
n—oo n—oo

1, z€Q

The Dirichlet function is defined by g(z) = {0 r¢Q

V2

a Consider the sequence =, = a+-—, a € Q, n € Z™. Use the given definition of continuity
n

to show that g(z) is discontinuous at x = a.

b Now suppose a ¢ Q, and that x,, is the decimal expansion of a to n decimal places, n € Z™.
Use the given definition of continuity to show that g(x) is discontinuous at = = a.

¢ Hence discuss the continuity of the Dirichlet function.

7 Consider two functions f, g and two values a, [ € R. Suppose f is continuous on R.
If I=g(a), you may assume the result:
“If g is continuous at a, and f is continuous at g(a), then fog is continuous at a.”

a If lim g(x) =1, show that li_r)n flg(z)) = f(D).

b Show that lim f(g(x)) = f (lim g(a:)) whenever lim g(z) exists.

r—a r—a

¢ Show that lim f(g(:r)):f(lim g(:z:)) whenever lim g(z) exists.
r—00 r— 00

r— 00

3=

1
8 a Showthat z® =e™*" for >0, z € R.
1
b Use the fact that f(z) =e® is continuous on R to prove that lim z" =1 for z >0,

n—oo
rER, neZt.

THE INTERMEDIATE VALUE THEOREM (IVT)

A function f is continuous on a closed interval [a, b], a < b, if f is continuous at  for all = € ]a, b,
and also lim+ f(z) = f(a) and lir? f(z) = f().
r—a r—0"

The following theorem formalises the intuitive property that a function f which is continuous on a closed
interval [a, b] has no ‘breaks” or ‘holes’ between = =a and x =b, and will in fact take every value
between f(a) and f(b) as we increase x from a to b.



24 CALCULUS

The Intermediate Value Theorem (IVT) states that:

Suppose a function f is continuous on a closed interval [a, b]. If k is any value between f(a) and
f(b), then there exists ¢ € [a, b] such that f(c) = k.

ya YA
f(a) f()
k k
or
f(®) f(a)
= a ¢ b ; = a c b z‘
v v

BOUNDED FUNCTIONS

A function f is bounded on [a, b] if, for all x € [a, b], |f(z)| < M forsome M € R. In other words,
a function is bounded on [a, b] if it does not tend to infinity or negative infinity on the interval [a, b].

If a function f is continuous on [a, b], then f is bounded on [a, b].

It follows that if f is continuous on [a, b], a < b, then:
e f has a maximum value M on the interval [a, b] where M = f(xps) for some zps € [a, D]

e f has a minimum value m on the interval [a, b] where m = f(z,,) for some x,, € [a, b].
EXERCISE C.2
1 Using the IVT, explain why:
a f(r)=2%+2—3 has areal zero in the interval [0, 2]
b f(x) = % does not have a real zero in the interval [1, 3] even though f(1) < 0 and
f(3)>0.
2 Consider the function f(z) = 23 — 922 + 242 — 10 on the interval [1, 5]. Find:

a the maximum value M of f on [1, 5], and the values x5 € [1, 5] such that f(xp) =M

b the minimum value m of f on [1, 5], and the values z,, € [1, 5] such that f(z,,) =m.

©w

Suppose f is continuous on [a, b, a < b, and suppose f(a), f(b) have opposite signs.
Prove that f has at least one zero between a and b.
4 a Prove that for each constant r € R, r > 0, there exists a real value of = such that
sine =1—rzx.
Hint: Let f(z) =sinz+rxz —1 and apply the IVT to a suitable interval.
b Suppose r = 1. Use your calculator to solve sinz =1— 2z on the domain z € | -2, 2[.
1
1+sin?z+ (r+1)2

5 a Use the IVT to prove that f(z) = z!° + has at least one zero on the

interval |—1, 1[ for any constant r € R.

b Let 7€ R, >0 be any constant. Can the IVT be used to prove the existence of a zero in

]-1,1] of g(z)=rz'™+ 5i? Explain your answer.
X
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20 DIFFERENTIABLE FUNCTIONS

Suppose f is a real function with domain D containing an open interval about = = a.

fla+h) - f(a)

f is differentiable at z =a if lim exists. If this limit exists we denote it by

h—0 h
f'(a), and f'(a) = Ain%) w is the derivative of f at = = a.

If f is differentiable at a for all a € D, then we say f is a differentiable function.
By letting « = a + h in the definition of the derivative, and noting thatas h — 0, x =a+ h — a,
we obtain the following alternative form for the derivative of f at = = a:

r—a r—a

Example 6

a Prove that cosh—1 _

lim ———— =0.
h—0 h

b Using the limit definition of the derivative, prove that if f(z) =sinz then f’(z) = cosz.

. cosh—1 . cosh—1 cosh+1
a lim ——— = lim
h—0 h h—0 h cosh+1
— lim cos?h — 1
h—0 h(cosh + 1)
- lim —— sin? h
"~ h—0 h(cosh+ 1)
sin h —sinh

= lim X —
h—0 h cosh + 1

sin h . —sinh

= lim {by the limit laws since both limits exist}

X lim ——
h—0 h h—0 cosh + 1
_ 0
=1x3
=0
b Let f(z)=sinz. If f'(z) exists, then it is given by
/ . sin(z + h) —sinz
z)=lim ——M ——
f ( ) h—0 h
sin x cos h + sin h cosz — sin x

= lim
h—0 h
. . cosh — 1 sin h
= lim |sinx + X COS T
h—0 h h

. . . h—1 . . inh
(hm smm) (hm L) + (hm cos ac) (hm Sm )
h—0 h—0 h h—0 h—0 h

{by the limit laws, since each of these limits exists}
=sinz X 0+ cosz x 1 {since z is independent of h}
=cosz

DIFFERENTIABILITY AND CONTINUITY

If f:D — R is differentiable at « = a, then f is continuous at = = a.
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Proof: Air% fla+h)— f(a)
— Im fetR) =@,
h—0 h

lim w x Jim b {by the limit laws since both limits exist}

= f'(a) x 0
=0

lim f(a+h) = f(a)

By letting = a + h, and since h can take both positive and negative values, this is
equivalent to lim f(z) = f(a).

f is continuous at = = a.

It follows that if a function is not continuous at x = a, then it is not differentiable at = = a.

The converse of this theorem is not true, however. If a function is continuous at x = a, it is not
necessarily differentiable there.

The set of all differentiable functions is therefore a proper subset of the set of all continuous functions.

TESTING FOR DIFFERENTIABILITY

For functions which are defined by different expressions on separate intervals, we need a formal test to
see whether the function is differentiable. To do this we first need to define:

h—0— h

e the right-hand derivative of f at z =a is f|(a) = hlim+ w .
—0

o the left-hand derivative of f at x = a 1is

A function f:D — R is differentiable at z =a, a € D, if:

1 f is continuous at x = a, and

2 f'(a)= hh%l* w and f! (a) = hh%l+ w both exist and are equal.

) >0 . . . .
Prove that f(z) = |z| = {xx z <0 is continuous but not differentiable at x = 0.
£(0)=0, lim f(z)= lim (—z)=0, "

r—0— z—0~

d 1 = i =0
wd B S0 e

lim f(z) = /(0) =0

sy

f is continuous at z = 0.




CALCULUS 27

1, >0 | o . .
Now f/(z) = {1 i < Since the derivative of f exists on the open interval | —oco, 0

and on the open inteval |0, co .
fL(0)=-1 and fi(0)=1
FL(0) # £1(0)

f 1s not differentiable at x = 0.

Example 8

Consider f(z) = {

sinz, x>0 . .

9 ~  with domain R.
x“+5xr, <0
a Prove that f is continuous but not differentiable at « = 0.

b Write down f’(z) as a piecewise defined function.

a f(0)=0 is defined.
lim f(z) = lim (z®>+5z)=0
z—0~ z—0"

|_—>
<

and wlgng flx) = mlir(r)lJr sinz =0

lim £(2) = £(0) =0
f(z) is continuous at z = 0.

Using known derivatives for open intevals of R,

we have f/(z) = {

cosz, x>0

2c+5, <0
f',(()):xllrgl_(2x—|—5):2><0+5:5

and f,(0) = mlirng cosx = cos0 =1

Since  fL(0) # f1(0), f is not differentiable at = = 0.

We observe on the graph of y = f(z) that the curve does not have a unique tangent at
7 = (0,

cosz, x>0

b From a we have f’(x)—{2x+5 <0

| DISCUSSIO!

There are functions which are continuous everywhere in their domain but which are differentiable
nowhere!

Research and discuss the Weierstrass function.
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EXERCISE D
1 Let f(x) =cosz. Use the definition of the derivative to prove that f’(x) = —sinz.
-5 x=5 . . . .
2 Prove that f(x)=|z—5|= . * is continuous but not differentiable at = = 5.
5—x, x<5H
T+ 2, x>0 Y
3 Let =
G {x2 +3x, z<0.

Explain why f(z) is not differentiable at = = 0.

|
i
S} 4

—2®>+5x+6, z>1
L Let = T
ot fl) {3m—|—10, z<1.
a Sketch the function y = f(z).
b Calculate: i f (1) i fL(1)

¢ Is f differentiable at = = 1? Explain your answer.

5 For each of the following functions and the given value of a, determine whether the function is
differentiable at = = a.

1+ sinx, x>0 cosz, x>0
a e . :0 b = , :O
f(@) {1:2—|—x+1, z <0 “ f(@) {xg, z <0 @
4z% — 3, x>2
c = =2
f(@) {1:3+21:+1, x <2’ “

6 Investigate the continuity and differentiability of f at = =0 if

ksinz, >0 .
f(z) = { ¢ 2 0 where k € R is any constant.
anz, =

7 Find constants ¢, d € R so that the given function is differentiable at = = 1.

2 .
7, r<1 sinfx — 1) 4+cx, z>1
= b =
a fl@) {ca:+d, z>1 f(@) {xQerd, r<l1
3 . (1) 7&0
8 Let f(m)—{m sz
0, x = 0.

a Prove that f is continuous and differentiable at = = 0.
b Write down f’(x) as a piecewise defined function.

¢ Is f'(z) continuous at = =0? Explain your answer.
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HI L'HOPITAL'S RULE

The limit laws do not help us to deal with limits which have indeterminate forms. These include:

Tpe Description
3 lim % where lim f(z) =0 and lim g(z)=0
r—a g T r—a r—a
= lim £@  where f(z) - oo and g(z) — oo when z—a
00 z—a g(x)
0xoo | lim [f(z)g(x)] where lim f(z)=0 and g(z) — too when 2z —a
r—a r—a

. . 2T —1
For example, consider lim .

z—0 x

Since lim (2 —1)=0 and lim (z) =0, we have the indeterminate form 2.

z—0 z—0
To address these types of limits, we use I’Hopital’s Rule:
Suppose f(z) and g(x) are differentiable and ¢’(z) # 0 on an open interval that contains the point
= a.

If lim f(z) =0 and lim g(x) =0, or, ifas  —a, f(z) > oo and g(x) — oo,

then lim & — jim @)

a—a g(z) a—a ¢'(2)

provided the limit on the right exists.

Proof of one case of I’Hépital’s Rule:

The derivative of a function f(z) ata point x = a, denoted by f’(a), is given by
f’(a) = T f(z) — f(a)'

r—a xr—a
Using this definition of the derivative, we prove the case of I’Hopital’s Rule in which
f(a) =g(a) =0, f'(x) and ¢'(z) are continuous, and ¢'(a) # 0.

Under these conditions,

o f@) o f@)—fla)
1 =] . 7 = =
I 2@~ A ) g (S @) =g(a) =0}
f(@)=f(a) 1
- {multiplying by

= )
z—a =
lim LS
i £ —9(@)
_ [
g'(a)
lim f/(x)
_ ml.—uz : {since f'(r) and g'(x) are continuous}
Jim g (z)
!
im @)

2 g'()

=1 since x # a}
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Example 9

Use I’Hopital’s Rule to evaluate:

. 2% —1
a lim
x—0 x

T— 00

b lim xe™”* ¢ lim

Inx

r—0o0 T

a lim
x—0

. 2T — 1
lim
x—0 B

lim L (2% — 1)

z—0 4z

lim 2% 1n2
x—0

lim 1
z—0

n2
1
=In2

b As x — 00, e 7

lim xe™ ™
T— 00

= lim =
z—o00 eT

lim %(w)

= =—=——— {I’Hopital’s Rule}

253, % ()
lim 1

Tr— 00

lim (e?)

r— 00

=0 {since

r— 00

¢ As x> o0, Inx — o0 and x — oo,

= —=——— {I’Hopital’s Rule}

lim
T— 00

{since

(2*—1) =0 and lirrb x = 0, so we can use I’Hopital’s Rule if the resulting limit exists.
r—

=2=0% _ {I'Hopital’s Rule}

— 0, so we can use |’Hopital’s Rule.

{convert limit to a quotient with the form ==}
(e.e]

lim 1=1 and as = — oo, e — oo}

(2)

. 2T — 1 . . 0
lim —— has indeterminate form = .
z—0 a2 0

lim xze™%* has
r—0o0

indeterminate form oo X 0.

£
&

AYA'

so we can use 1’Hopital’s Rule.

[ . Inx
lim
r— 00

0 . o0
—— has indeterminate form —]
T o0

=0}

Important:

using 1’Hopital’s Rule.

of sinz from first principles itself requires the use of

Example 6.

sin x

A common error is to attempt to evaluate the Fundamental Trigonometric Limit lim ——

z—0 T

We cannot use I’Hopital’s Rule in this case as the derivative

.  sinzx
lim =1,
z—0 @

as shown in




CALCULUS 31

EXERCISE E
1 Evaluate, if possible, the following limits using 1’Hopital’s Rule.
i 1—coszx b I e’ —1—=a
a o T ST Some of these limits were
| v evaluated in Exercises B.2
¢ lim —2 d lim & and B.3 using other methods.
z—1 x—1 r—00 T

. . arctanx
e lim zlnx f lim ———
r—0t+ z—0 x
2 .
. 4+ . sin ©
g lim = h lim
r—0 sin2z r—0t \/E \ .

.. T +sinx . .
i lim ——— j lim 2%lnz
x—0 T —sIinx r—07t
. aI _ hT
ke lim , where a, b> 0 are real constants.

z—0 sinz

2 Attempt to find  lim tan® using 1’Hopital’s Rule.
RN g secx
s
. 5 — arccosxr — T 1
3 Show that lim ——— = ¢.

z—0 x3

Example 10

Find  lim In(cos 3z)

z—0+ In(cos 23:)

lim In(cos3z) =0 and lim In(cos2z) =0, so we can use I'Hopital’s Rule.

z—0t z—0t
1 3 —3sin 3z
DAl _ ey | s {I’Hopital’s Rule}
z—0+ In(cos 2z) z—0+ \ —2sin2z
cos 2x
- lim (3 sin 3z cos 2x>
z—0+ \ 2sin 2z cos 3x
. sin 3z . 3 cos 2x
=( lim — x | lim
z—0+ sin2x z—0+ 2cos3x
_ ( lim s%n 3w> % % (%) At step (*) we could
z—0+ sin2x have alternatively

used the Fundamental

Now lim sin3z =0 and lim sin2x =0, . o
Trigonometric Limit.

z—0t z—0t

so we can use [’Hopital’s Rule again.

z—0+ ln(cos 2x) $—>0+ 2 cos 2x
3

X 2

b leite) ( 3 cos 3m> x 3 {I’Hopital’s Rule}
3
2 X3
9
1
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4 Evaluate:
In(cos 5z) b  lim In(sin 22)
z—0+ In(cos 3z) ~— In(sin 3x)
2

Tr—
Example 11

Evaluate  lim (secz — tanw).
e

As x—>g , both secx —» oo and tanz — oo.

We therefore need to convert the difference secx — tanz into a quotient, and then apply
I’Hopital’s Rule.

1 sin 1 —sinx
Now secx —tanz = = =
cos T cos T cosx
. . 1 —sinx
lim (secz —tanz) = lim (——
™ — ™ — COS T
Z—>5 $—>5

where  lim (1—sinz)=0 and lim cosz =0
T—2 T—Z

lim (—cosz)

li = R I’Hopital’s Rul
) 1r£17 (secx — tanz) i (Ceina) {I’'Hépital’s Rule}
2 T
23
—0_
=1=0

5 Evaluate, if possible:

a lim (l— _1 ) b lim (l— ! ) ¢ lim (sec’z —tanz)

€T s T

K
—
T B)

Example 12

X
Evaluate, if possible: lim <  where ne Z*.
z—o00 ™

Forall n€Z", as =z — oo, e* — oo and z™ — 0o, so we can use I’Hopital’s Rule.

T T
o &) o
lim — = lim T
r—oo r—o0 nx" T

We use I’Hopital’s
Rule n times.

As x — oo, e¥ — oo, so the given limit DNE.
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k
6 a Evaluate, if possible: lim m—m, kezt.

T—00 €

b Hence explain why, as = — oo, the exponential function e® increases more rapidly than any
fixed positive power of z.

7 Prove that as x — oo, Inzx increases more slowly than any fixed positive power of z.

8 a Provethat lim zln (1 + l) =1.
xT

T— 00

b By writing (1 + 1) =¢° tn(1+5) and using the fact that f(z) = e* is continuous on R,
x

prove that  lim (1 + l) =e.
x

r—00

¢ Prove that for a #0, lim (1 + 2) =e
T

r— 00

9 By writing z%"% = esin®Inz  and ysing the fact that f(z) = Inx is continuous on z € R,

x >0, prove that lim 259% =1,
z—07t

1
10 Prove that lim 2= =1.
r— 00
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ROLLE'S THEOREM AND THE
EAN VALUE THEOREM (MVT)

Suppose a real function f is defined on domain D.

f:D — R is continuous on a closed interval [a, b], a <D, if:

1 fiscontinuousat z =c¢ forall c€ |a, b[, and
2 lim+ f(z) = f(a) and 111217 f(z)=f()

For a function f: D — R we define:
f is differentiable on an open interval ] a, b[, a <b if f is differentiable at z = ¢ for all
c€la, bl.
f is differentiable on a closed interval [a, b], a <b, if:
1 f is differentiable on ]a, b[, and
2 fl(a) and f’(b) both exist.

ROLLE’S THEOREM

Suppose function f: D — R is continuous yA
on the closed interval [a, b], and differentiable
on the open interval ]a, b|. y=f(z)

If f(a)= f(b) =0, then there exists
avalue c € ]a, b[ suchthat f'(c)=0. Y a ¢ § fb 5

Rolle’s theorem guarantees that between any two zeros of a differentiable function f there is at least one
point at which the tangent line to the graph y = f(x) is horizontal.

Proof of Rolle’s theorem:

Since f is continuous on [a, b], it attains both a maximum and minimum value on [a, b].
If f takes positive values on [a, b], let f(c) be the maximum of these.

Now f(a)=0= f(b) and f(c)>0, so c€]a,b|.
Since f is differentiable at ¢, f must have a local maximum at z =c. .. f/(c) =0.

Similarly, if f takes negative values on [a, b], let the minimum of these be f(c). It follows
that f has a local minimum at x = ¢, and therefore f/(c) = 0.

Finally, if f(z) =0 forall z € [a, b] then clearly f'(c)=0 forall c€ ]a,b].

[
Rolle’s theorem is a lemma used to prove
the following theorem.
A lemma is a proven
proposition which leads
on to a larger result. 2
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THE MEAN VALUE THEOREM (MVT) (THE LAGRANGE FORM)

If f is a function continuous on [a, b] and differentiable on |a, b,
then f(b) — f(a) = f'(c) x (b—a) for some number ¢ € |a, b].

The MVT tells us that for such a
function f there exists at least one value yA
¢ € ]a, b] such that the tangent to the
curve y = f(z) at z = c¢ has gradient
equal to the gradient of the chord through

points (a, f(a)) and (b, f(b)).

b—a

\ gradient = f'(¢)

Proof of the MVT:
Let h(z) = f(z) — [M] (@—a) - f(a) for z€[a, b
—a
Since f is continuous on [a, b] and differentiable on ]a, b[, so is the function h.
Now, h(a) = h(b) = 0, so by Rolle’s theorem there exists ¢ € Ja, b[ such that
B (c) = 0.

But '(z) = f'(z) (w) for o ¢ ]a, b

H() = ') - (L8219 —o

fig = LO=1@

We have seen that the derivative of a constant function is zero. We can now prove the converse of this
result, that if a continuous function f has derivative equal to zero, then f is a constant function.

FIRST COROLLARY OF THE MVT

Suppose the function f is continuous on [a, b] and differentiable on ]a, b[. If f'(z)=0 for all
x € Ja, b[, then f(z) is a constant function on [a, b].

Proof: A corollary is a result
} which follows directly
Let « € |a, b] and apply the MVT to f on the interval [a, z]. from a theorem, and
) which is worth stating in
Then f(z) — f(a) = f'(c)(x —a) forsome c€ |a, x| .
=0x(z—a)

-0
f(x)=f(a) forall z€ ]a,b] A

f(z) = f(a) forall x € [a, b] a
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SECOND COROLLARY OF THE MVT

Suppose F' and G are two functions continuous on [a, b] and differentiable on ]a, b].
If F'(z)=G'(xz) forall z €]a,b[, then F(z)=G(xz)+ C for some constant C,
for all z € [a, b].

Proof: Let H(z)=F(z)— G(x), for z € |a, b].
H is differentiable on |a, b[ and H’(z) =0 on |a, b].
By the first corollary of the MVT, H(x) is a constant for all x € [a, b].
Hence F(z)= G(z)+ C as required.

ANTIDERIVATIVES

A function f has an antiderivative G on [a, D] if there exists a function G continuous on [a, b] such
that G'(z) = f(z) forall z € ]a, b|.

If a function f has an antiderivative G, then G is unique up to the addition of a constant.

Proof: Suppose f has two antiderivatives F, G on [a, b].
By definition, F’'(z) =G'(z) = f(z) forall z € |a, b|.
By the second corollary to the MVT, F(z) = G(z)+ C, where C is a constant.

We define / f(z)dx = G(xz)+C to be the indefinite integral of function f with respect to 2. The

function f is called the integrand and the indefinite integral of f is thus the set of all antiderivatives
of f on [a, b].

EXERCISE F

1 Determine whether or not Rolle’s theorem applies to the function f on the given interval [a, b].
If Rolle’s theorem does apply, find all values ¢ € |a, b[ for which f/(c) = 0.
a f(z)=32%+522 — 43z + 35, [a, b] =[5, 23]
b f(z) =lz| =5, [a, 0] =[5, 5]
1
< f(x):27m_+1’ [a> b] :[7%> 7]
—2r—5, r<-1 B 1

a f@={Z707 15T =l

2 For each of the following functions, find:

i the number of real zeros of the derivative f’(z), as guaranteed by Rolle’s theorem
ii the exact number of real zeros of the derivative f/(z).

a f(z)=(z—-1)(z-2)(z—4)(z -5) b f(z) = (x—1)*(2? - 9)(z - 2)

¢ f(2)=(z-1)*@"+9)(x-2)
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3 Show that the given function f satisfies the MVT on the given interval [a, b]. Find all values of ¢
such that  f(b) — f(a) = f'(c) x (b— a).
a f(x)=23% VJa, b =[-22] b f(z)=+vx—2, [a,b]=]3,6]

¢ fx)=x+ i [a, 0] = [1, 3]

4 Let f(z)=+/z.

a Use the MVT to show there exists ¢ € ]49, 51 such that /51 —7 = %
C

b Graph y= % on the interval [49, 64].
T

¢ Hence prove 3 <+/b51—7<1 without using decimal expansions.
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R REmMANN sUMS

Let y = f(z) be a function which is non-negative and continuous on the interval [a, b], a < b.

yh

y=f(x)

Y

a b

\J

Let A denote the area under the curve y = f(x) and above the z-axis for a < x < b.

Archimedes of Syracuse (c. 287 - 212 BC) developed the following method for approximating the area
A using the sum of areas of rectangles:

A partition of the interval [a, b] is a set of n + 1 points in [a, b] which divide the interval into n
subintervals [xg, z1], [z1, Z2], <oy [Tn—1, Tn], Where zg =a, x, =b, and 2o < 1 < ... < Tp_1 <
T,

We write partition P = {a = g, =1, ...., &n, = b}.

The length of the ith subinterval [z;_q, z;], i=1, ..., n is Az, =xz; — x;_1.
yh
y=f(z)
N a=1xy T Ty T, 1 T,=b e
v
Let x;* € [x;—1, x;] be an arbitrarily chosen value in the ith subinterval, i =1, ...., n.

Let A; = the area of the rectangle whose base is the width of the ith subinterval and with height
equal to f(x,;%)
YA

f(x2*) y=Jf@)

Ty Ty TP Ty x, T
Y

n
The area A can be approximated by A~ > A;

f(z) Az + .. + f(z,)) Ay,

I
M=

fx)Az;
1

.
Il

and this is called a Riemann sum.
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LOWER AND UPPER RIEMANN SUMS
Suppose f is non-negative and continuous on [a, b], and let partition P = {a = xo, 1, ..., T, = b}.

If we choose the values =, € [x;—1, x;], ¢ =1, .., n so that f(z;*) is the minimum value of
f(z) on the interval [z;_1, z;], then the Riemann Sum is called a lower Riemann sum and is denoted

L, = éf(xi*)Axi.

If we choose the values x,* € [z;—1, z;], ¢ = 1, ..., n so that f(x;*) is the maximum value of
f(z) on the interval [z;_1, x;], then the Riemann Sum is called a upper Riemann sum and is denoted

U, = Zn:lf(:z:z*)A:z:z

REGULAR PARTITIONS

Partition P is regular if the n subintervals have equal length. In this case:

b—a

n

° xi:a—i—(

o Ax= =Ax; forall i=1,...n
b—a

n

) i forall i=0,..,n
) X ).

When evaluating Riemann sums, the following identities may be useful:

b—a

n

e the Riemann sum is (

c = cn for ¢ a constant

or

-
Il
—

n
R ZZ.: n(n+ 1)
= 2
. zn:izz n(n+1)6(2n+1) _ 2n3+£;n2+n

o
Il
-

CALCULATING EXACT AREAS

For the function f(x), the rectangles for the lower sum lie under the curve y = f(z) and the rectangles
for the upper sum lie above the curve. The exact area A under the curve and above the z-axis on [a, b]
therefore satisfies L, < A < U, for all partitions of [a, b] into n subintervals, n € Z*.

For a regular partition, in the limit as n — oo, the width of each subinterval — 0.

. . b—a
lim Az = lim
n—oo n—oo n

=0.

At the same time, the approximation for the area A is squeezed between the lower and upper Riemann

sums.
lim L, = lim A= lim U,

n—oo n—oo n—oo
For f a non-negative continuous function on [a, b], a < b, the exact area A under the curve y = f(x)
and above the z-axis on [a, b] is the unique value which satisfies L, < A < U, for all regular
partitions of [a, b].
In particular, lim L, = A= lim U,.

n— oo n— oo
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Suppose f(z) =z% on [0, 1].

a Let P be a regular partition of [0, 1] into n subintervals. Find Az, and write z; in terms of ¢

and n.
. . 1 1 1
b Show that the lower Riemann sum is given by L, = - — — + —.
3 2n  6n2
. . 1 1 1
¢ Show that the upper Riemann sum is given by U, = = + — + —.
& 2n 6n2
d Hence find the area A under the curve y = 2 and above the z-axis on [0, 1].
a There are n subintervals from zg =0 to =z, = 1. YA ‘
1= 1 _ 2
Ar=2"0-1 y==
n n
T; = xg + 1Az
i .O + M3
(2
= Z’ 1= 1, ooooy Wlko ms
b \j 1 z

3
n

Sl
S

b The minimum value of f(z) on [z;_1, 2]

17—

¢ The maximum value of f(z) on [x;_1, 2]

2 2
is m; = f(aci_l) = ( ) 5 = 1, aooog Wlko is Mi = f(a:z) = (—) 9 = 1, coooy ko
the lower Riemann sum is the upper Riemann sum is
1 & 1 & (i—1)2 1o 12
Ly,== my== U ==-S"M =5 1
1 n 0 2 1 n
== > (-1) =5 ¢
1 2=l 3 2
:_3212 :i?) 2n° 4+ 3n“ 4+ n
n= =0 n 6
1 ((n—1)(n)(2n —1) 1 1 1
=3 ( =3 T ez
n 6 3 2n 6n
1 2n3 —3n2 +n
T ns 6
11 1
3 2n 6n2

d The rectangles for the lower sum lie under the curve y = 22

sum lie above the curve.
the exact area A under the curve y = z

and the rectangles for the upper

2 and above the z-axis on [0, 1] satisfies

L, < A< U, for all regular partitions of [0, 1] into n subintervals, n € Z*.

1 1 1 1 1 1

4+ <AL=+ —+_— forall nezZ".

3 2n 6nr2 3 2n  6n2

. 1 1 1 1 . 1 1 1
Now lim (——— —>:—:hm (——I—— —)
n—oo \3 2n 6n2 3 n—oo \3 2n 6n2
and lim A= A, since A is a constant.
n—oo

by the Squeeze Theorem, A = % units?.
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EXERCISE G.1

1 Let y=sinz on [0, 7]
Let P={0,%,%, 35, n} be a regular partition of [0, 7].
Calculate Ly and U, exactly, and sketch the corresponding areas on graphs of the function.

2 Suppose f(z) =2z on [1,4].
a Let P be a regular partition of [1, 4] into n subintervals. Find Az, and write z; in terms of ¢
and n.
b Write expressions for L,, and U,,.

Hence find the area A under the curve f(z) = 2z and above the x-axis on [1, 4].

3 Suppose f(z)=x? on |1, 2].
a Let P be a regular partition of [1, 2| into n subintervals. Find Az, and write z; in terms of ¢
and n.

b Write expressions for L,, and U,,.

2

Hence show that the area A under the curve f(z) = z* and above the z-axis on [1, 2] is

7 its2
3umts.

DEFINITE INTEGRALS

Let f, not necessarily non-negative or continuous, be any function defined on the interval [a, b].
Let P ={a=xg, 21, ...., &, = b} be any partition of [a, b].

If the values z,* € [x;—1, @;], i =1, ..., n are arbitrarily chosen then R = ) f(z,*)Ax; where
i=1
Ax; =x;—xi—1, i =1, ..,n is called the Riemann sum of f on [a, b] for partition P and selection
{z, 25", oy 0}
. " b—a . (b—a) & "
If P is aregular partitionthen Az = —— = Ax; forall i=1,...,n, and R=-——=>" f(z,).
n nooi=1

In the limitas n — oo, Az — 0 and lim R= lim (Gintl)] > f(z).
n—oo n— oo n 3

If this limit exists, we say f is integrable on [a, b]. We denote the value of this limit by

b n
/ f(z)dz = lim -9 > f(x;) and call this the definite integral of function f from a to b.
n—oo

noo=1
The function f is the integrand.
If a function f is continuous on [a, b], then f is integrable on [a, b].

The interval [a, ] is called the domain of integration. The values a and b are also called, respectively,
the lower and upper limits of the integral.
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INTERPRETING DEFINITE INTEGRALS AS AREAS

If f is an integrable function which takes negative values on [a, b], we must take care when interpreting
definite integrals as areas. We observe that:

o If 0 on [a,b], a<b, then Y4
fz) > [a, b] y=f(x)
/ f(z) de = A = the area under the curve.
A
= a b %
¥
o If f(z)<0 on [a, b with a <b, then y4

3Y

a b
/ flx = — A = —(the area between the curve ~
and the z-axis) 4
In this case the values f(z,*) in the corresponding
Riemann sum will be negative.
y=f(z)

b a
If we reverse the direction of integration we obtain / f(z) de = — / f(z) dx for f an integrable
a b

function on [a, b] with a < b.

By interpreting definite integrals in terms of areas, the following results can be demonstrated:

For f(x), g(z) integrable functions on [a, b]:

e If f takes positive and negative values on [a, b] Y y= f(z)
then the area bounded by y = f(z), the x-axis,
and the lines = = a and x = b is given by 4—‘\ ﬂ—» R
b h a b

In this case,

b
/ f(z) dx = (enclosed area above the z-axis)

— (enclosed area below the z-axis)

. /af(:z)dx:0 A y=f(z)
./f dx—/f dx+/f

for all ¢ € [a, b]

. /ab(f(x)ig(x)) dz = / f(@) o /abg@c) a

S|
()
S
53
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EXERCISE G.2
3 7
1 Suppose f is a function continuous on R, and that / f(z) dx =2, / f(z) dx = %,
1 2

5 6
/ f(z) de=—%, and / f(z) do = —
2 3

a Find:

/16 f(z) dz i /57 f(z) dz il /75 f(z) dz iv /44 f(z) da
/35f(x)dm—/12f(x)dx vi /23f($)d$+/67f(x)dx

b Sketch a possible graph for y = f(xz) on [1, 7].

3, 0<xe<1

2 Sketch the function f(x)= ¢ 4, r=1
4—-2z, 1<z<3

3 3
Hence find a / f(z) dx b / | f(z)]| dx
0 0

3 Use the limit definition of a definite integral to prove that, for integrable functions f(z) and g(z)

on [a, b|:

/f da:—/ f(z dac—i—/ f(z)dx forall cé€ |[a, ]
b/a<f<)+g dx—/ fa dq:—i—/a o) da
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5| THE FUNDAMENTAL THEOREM OF CALCULUS

Although Riemann sums and limits of Riemann sums are used to define the definite integral, we rarely
use them to calculate the value of a definite integral.

In this section we prove the Fundamental Theorem of Calculus (FTOC). The FTOC links together
the definite integral and the indefinite integral for integrable functions, which includes all continuous
functions. It is this theorem we use when calculating definite integrals of continuous functions.

If f is integrable on [a, b] with a < b and if f is bounded on [a, b] so that m < f(z) < M for
all = € [a, b] where m, M € R are constants, then

m(b — a) </ f(x) de < M(b— a).

Proof: m< f(z) <M forall z € [a, b
for a regular partition P of [a, b] with Az = b_—a, n € 7+,

n
mAzx < f(z) Az < MAz
. mAzx < f(z;") Az < MAz for each z,* € [z;—1, z;], i =1, ..., n.

By summing these n inequalities, and since nAx =

mb-a) _ b — a, we obtain:
n

T é f@*) Az < M(b— a)

b
In the limit as n — oo, we obtain m(b —a) < / f(z) de < M(b— a).

For the special case when f is non-negative and continuous m
on [a, b], we observe in terms of area that M
b
m(b—a) <AL M(b—a) where A:/ f(z) dz. A y=F(z)
m
- p b ;
A\

If f is continuous on [a, b] with a < b, then there exists ¢ € [a, b] such that

b
=32 [ f@ o

which is called the average value of f on [a, b].

Proof: If f is continuous on [a, b] then f is bounded on [a, b]
there exist constants m, M € R such that m < f(z) < M on [a, b], where
m = f(x,,) is the minimum value of f(z) on [a, b] and M = f(xp) is the
maximum value of f(z) on [a, b].
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b

. m(b—a) < (z) de < M(b— a)

by the previous result.

By the Intermediate Value Theorem (IVT) applied to f on the interval [z, z/]

whichever is appropriate,

f: f(z) dz
b—a

or [zar, Tm),

flo)=

for some ¢ € [a, b].

Now let f(x) be a continuous function on [a, b], with a < b.

/ f(t)dt for z € [a, b)].

We define a new function F(x

Since f is continuous on [a, b], f is integrable on [a, b], so function F' is well defined for x € [a, b].

For the special case when f is also non-negative on
[a, b], we can interpret F'(z) as the area under the curve
y = f(t), above the t-axis, and between ¢ = a and
t = x, as shown.

We prove that function F'(x) is an antiderivative of f(z)
on [a, bl.

Y A

x):/: £(t) dt

THE FUNDAMENTAL THEOREM OF CALCULUS (PART 1)

If f(x) is continuous on [a, b] with a < b then F(z

on [a, b], and F'(z) = f(z)
Proof:

Let z € ]a, b[, andlet A >0 Y4

forall z €]a,b].

be such that x + h < b.

/ f(t) dt is continuous

h h
1 xz+h
1 z+h
“Gin-= / F(#) dt

= f(o)

a @ awAr

for some c € [z, x + h),

Sl 4

since f is continuous on [a, b].
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hm+ w = lim+ fle)=f(z) since z<c<ax+h
h=0 h=0 and f is continuous on [a, b].

In the same way for h <0, x+ h > a, we find

lim w = lim f(c)=f(z) since z+h<c<w
h=0 =0 and f is continuous on [a, b].

F'(z) = f(x) as required.

Since F is differentiable on ]a, b[, F is continuous on ]a, b[. We still need to show
that F' is continuous on [a, b].

Since f is continuous on [a, b], f is integrable on [a, b]

a b
oo F(a) = / f@)dt=0 and F(b) = / f() dt  are both defined.

Now lim F(z) = lim /9” f(t)dt and lim F(z)= lim ’ f(t) dt

z—at z—at z—b~ z—b= J,
a b
—/ f(t) dt =/ f(t) dt
~0 _ F(®
= F(a)

Thus F(x) is continuous on [a, b].

The FTOC (Part 1) can also be written as:

If f is continuous on [a, b] then % (/w f(@) dt) = f(x), for z €]a,b].

The FTOC (Part 1) guarantees that any function f continuous on [a, b] has the antiderivative

xz
F(z) = / f(t) dt on [a, b], even if we cannot write it down.

For example, f(z) = sin(2®) has an antiderivative F(z) = / sin(t®)dt on [0, co| even though
0

we cannot write down an antiderivative of sin(z3) explicitly as a function.

THE FUNDAMENTAL THEOREM OF CALCULUS (PART 2)

If f is any function integrable on [a, b] which has an antiderivative G on [a, b],

b
/ f(@) dx = [G@)]". = G(b) — G(a).
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Proof:
Case: If f is continuous on [a, b] then f is integrable on [a, b].

By FTOC (Part 1) the function F(z) = / f(t) dt is an antiderivative of f on [a, b].

By the second corollary to the MVT,

F(z) = G(z) + C where C is a constant.
F(a) = G(a) +C

/a £(t) dt = G(a) + C
c 0=G(a)+C
C=-G(a)

(
Hence F(x)=G(z)— G(a)
b) = G(b) — G(a)
t =

oo F(
-~ " a

b
Case: Suppose f is not continuous on [a, b]. By the premise of the theorem, / f(z) dzx

G(b) — G(a) as required.

exists, and G is a function continuous on [a, b] such that G'(z) = f(z) for x € ]a, b]|.

Let P = {a=x, 1, ...., T, = b} be a regular partition of [a, b] with n € ZT.

Consider the ith subinterval [z;_1, z;], ¢ =1, 2, ..., n.
By the Mean Value Theorem, Gley) ~ Gl@izy) _ G'(z;*) for some z;* € [x;—1, x;].
T — i1
Thus G(z;) — G(zi—1) = G'(z;*) Az, where Az = =G T; — Ti—1.
n

Summing over all subintervals in the partition we obtain

> G'(e/)Az = 3 (G(e) ~ Glai)
— [G(@1) — G(@o)] + [G(@s) = G(@1)] + v + [G(n) — G(n-1)]
= G(xn) — G(x0)

é F@)Az = G(b) — Gla), since G'a) = f(z;), Tn=b, and mp=a.

lim [i f(:vi*)Am] = G(b) — G(a) which is a constant.
f(z) de = G(b) — G(a) as required.

If a function is integrable and has an explicitly defined antiderivative, then the FTOC (Part 2) allows us
to calculate definite integrals easily.

3 1 31!
For example, if f(z) = 2% then G(z)= % and therefore /0 x? dx = [%] = g - % = 1.
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Does the existence of an antiderivative guarantee that a function defined on [a, b] is integrable on

[a, b]?

Example 14

This is valid since
f(t) =cos®t isa
continuous function.

Q‘lg“‘

d

(
[
(-
fCL

u

c\m\;

] 5
Find F'(z) if: a F(z) = / cos® t dt b F(z)= / el dt
1 2
; 5
a F'(x) b Fl(z)= - / e dt)
— & cos® t dt d
dz 1 = d_ / et dt
= cos® z >

el dt) where u(z) = z?

e dt) X @ {Chain rule}

t

= —e" x 2z  {valid since f(t) =e" is continuous}
= 2"
Example 15
x2 1
Find F'(z) if F(z)= / ——dt.
, t2+3
d “
Fl(z) = — L at
dx © t2 +3
mz C
d 1 .
= — d where c is a constant
de \ J. t2+3
l‘2 T
d 1 d
_d_x(/c Mdt)%(_/c —y
d Yo 1 . .
- (/c t2+3dt> 213 {letting wu(x) =x°}
a([" 1 du 1 .
= — dt — — Ch 1
du </C i2+3 ) de 22 +3 (G
= 2:_3 % {valid since f(t) = o is continuous}
2z 1
Tzt +3 z2 43
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EXERCISE H
1 Find F'(x) if:
a F(x)= ' sin t dt b F(x)= ' __dt
1 0 (t2 + 2)15
4 N z? )
¢ F(x)= / e dt d F(x)= / eSSt dt
x —1
S ~172
2 Explain what is wrong with the argument: / — dr = [—} {FTOC}
1 T T 11
=—1-0)
__3
. 2
3 a Can 4 < / % dt) for x € R Dbe calculated using the Fundamental Theorem of Calculus?

dx 1

Explain your answer.

b For which values of x can the derivative in a be calculated?

4 Calculate the following derivatives:

2z z? sinx
d t d d 1
@(/1 — d’f) ° a(/ sin(e >dt> ¢ I(/ e dt)

10
5 Find / |z | d.

-3

. sinz, 0<z< %
6 Find / f(z)dz for f(z)= 2z, 7 <73
0 L 3<a<s
€T
7 Find exactly the average value of each function on the given interval:
2
1 5, —2<z<1
= — = —2
s =% s b sw-{5 TITS0 e 2

2

8 Let F(x):/ cos(e’”) dt, = >1. Find exactly:
1

a F'(z) b F'(0) c F'( In (g)) d F"(z) e F'(0)

9 Let y= f(t), t € [0, 4] be the function with the yh

graph shown. Let g(z / f(t) dt, 5 fros > y=f(t)

x € [0, 4]. Find exactly:
a g(1) b 9(3) ¢ g1

d ¢(3) e ¢"(3). 1 m/

\

g()
10 Suppose ¢'(3) =5, ¢g(38)=4, f(2)=-1, and F(z)= / f(t—2)dt.
1

Find F’(3), stating the assumptions about f and g necessary to make the calculation valid.
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NTEGRALS OF THE FORM
[ £(@) da

An integral is described as improper if one of the following is true:

e the integrand approaches +o0o or —oo for one or more points on the domain of integration,
2

1 .. . 1. .. .
for example / — dz is improper since — is discontinuousat z =0 andas = — 0, f(x) — oo
T T

oo b o
e it has the form / f(z) dx, / f(z) dz, or / f(z) dx where a, b € R are any

constants. We define, when these limits exist:

/f d;r—hm/f

/f dr= lim f()

a— — 00

and/ f(z d:z:—/ f(z dx+/ f(z

In this course we are only concerned with improper integrals of the form / f(z) dz.

0o b
The improper integral / f(z) dz is said to be convergent if / f(z) dz exists for all b
a a

o0 b
where a < b < oo, and if / f(z) de = blim / f(z) dz exists.

Otherwise the improper integral is divergent.

Example 16

oo
. 1
Investigate the convergence of / — dxr where p € R.
1 i

oo b
If p=1, / idaczlim ld:t:
1 X

TP b—00 1
= lim [Inz]®
el

= blim (Ind) which DNE since as b — oo, Inb — oo
— 00

x

1
Hence / — dx is divergent.
1

* * 1
If p#1, / —pdmzlim — dx
1

T b—oo [q xP

o [
T booo (1—p).’l:p_1 1
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1
— dx = lim
1 xP b—o0

= lim
1—pb—oo
= lim
1—pb—oo

— P b—oo

If p>1 then

G

p—1
If p<1, lim <l> DNE as b — 0o, (b)!77 — oo.
b—oo \b

o0
Hence / ip dx converges if p > 1 and diverges if p < 1.
1 x

E—
]
(&) -]
)p_l _ 1] - pil.

b

1

From Example 16 we conclude the important result:

r

— dx converges if p>1
P

and diverges if p < 1.

THE COMPARISON TEST FOR IMPROPER INTEGRALS

Suppose 0 < f(z) < g(x) forall z > a.

o If / g(x) dz is convergent, then so is / f(z) d.

o If / f(z) dx is divergent, then so is / g(z) dx.

Determine whether

dx

[ #
; VA1

is convergent or divergent.

Now we know that

so it follows that

*

Now — dx
[ %
S

where — dx
[

0<Vr—1<x forall z>2
1 1

L e & — > 2.

0\\/5\\/5_1 for all =z > 2

> 2
= — dx — — dz
/1 e /1\/‘E

(0.
exists, but from Example 16 / L dx is divergent.
1 VE

> <
— dz s divergent, and so
5 VT 5 T —1

dx s divergent by the Comparison Test.
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o0 (o)
If / | f(z)| dx converges then / f(z) dx  converges.

Proof:

By definition, —|f(z)[ < () | f(z)|
0< f(2)+ 1 f(2)] <2]f(2)]

/ F@) +1£@)| do < / |£(@)| da

by the Comparison Test, if / | f(z)| dx is convergent then so is / flz)+| f(z)]| d.

a

Supposing / |f(z)| dv=A and / f(x)+|f(z)| dv =B where A, BeR
then / f(z)dx =B — A.

(o)
Hence / f(z) dz is convergent.

Example 18

Using integration by parts and the Comparison Test, prove that /
1

sin x

dx is convergent.

b
COS T

dx {integration by parts}

Now 0 <

< % forall x> 1,
X
*
and we also know from Example 16 that / — dx is convergent.
T
- 1
/1

oo .
ST
dx converges.
1

T

COosS T Cos T

2

dx.

dx is also convergent, and hence so is /
X
1
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EVALUATING IMPROPER INTEGRALS

When an improper integral is convergent, we may be able to evaluate it using a variety of techniques.
These include use of the limit laws, I’Hopital’s Rule, integration by parts, and integration by substitution.

Example 19

o0
Evaluate / ze ¥ dzx, for any constant a € R.
a

0 b
/ ze ¥ dxr = hm ze ¥ dx
a

= lim ([ e “”

b—)OO a

= lim ( be 4+ ae”® — [e_‘"”]b>
b—>oo a

= lim ( be ®+ae ®—e P4 e_a)
b—>oo

=e *a+1)+ hm ( ( 1—b))

=e *a+1)+ hm <1bb)
b—oo €

Nowas b—oo, —1—b— —c0 and e’ — .

(o)
/ re ¥ dr=e *(a+1)+ lim _—bl {I’'Hopital’s Rule}
@ b—oo €

=e *(a+1)

—e " dx) {integration by parts}

EXERCISE 1.1

1 Use the Comparison Test for improper integrals to test for convergence:
0o © 2
—1
a / ST @ ° :
L 225 +322+1 s a1l 1

sinx

o0
2 Determine whether / dx 1is convergent.
1

.’I)

3 Test for convergence:
o0 2 o0 o0
1 g2 1
a / z 1 * dx b / e ¥ dx C / 22 de
1 z*+1 0 1 T

[ee]
4 Show that / e “cosx dr is convergent.
0

5 Evaluate:

o0 o0
a QL b isim (l) dx
0 T + a? oz z

T

o0

d . o

6 Evaluate L using the substitution u = e”.
o eIL’ _l’_ e—.’L’

d / e Tlnzdx
1
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o0
1 1
7 Evaluate — — —— | dux.
va /1 <\/E m) o

. . 1
8 Find the area in the first quadrant under the curve y =

z2 4+ 6z + 10"

o0
9 Prove that / ln—pm dz is divergent for p < 1.
€T
e

o0
10 a Evaluate the integral / z"e " dxr for n=0,1, 2, 3.
0

o0
b Predict the value of / 2" % dx for neZt.
0

¢ Prove your prediction using mathematical induction.

APPROXIMATION TO THE IMPROPER INTEGRAL / T f(@) de, a € Z

o0
Suppose f is continuous and positive on [a, co[, a € Z. We consider the integral / f(z)dx in

terms of area under the curve for > a. Consider a regular partiton P = {a,a+1,a+2, ...} of
[a, co[ with subintervals of length Az = 1.

Ay 1
QL s .
| f(a+3) Area=/[ f(z)dx
i e etc'
y=f(z)
= v a a+l a—;-2 a—:i-3 "

For each interval of length one along the x-axis, we can draw a rectangle of height equal to the value of
the function on one side of the rectangle.

For example, using the left side of the rectangle, the rectangle from =z =a to x =a+1 would have
height f(a), the rectangle from z =a+1 to x =a+ 2 would have height f(a+ 1), and so on.

by a a+1
ﬂ)f(+)ﬂw%
f(a+3)
\\\\\\*y=ﬂ@
b v a a+l a+2 a+3 =

oo
As with definite integrals approximated by Riemann sums, the improper integral / f(z) dx may
be approximated by the corresponding sum of areas of these rectangles. @

o0 o0 b 0
/ flx)dx~ Y f(i) = lim ) f(i) where > f(i) is also called an infinite series.

b—o0 i=a
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DECREASING AND INCREASING FUNCTIONS

Suppose the function f(x) is decreasing for all = > a.

N f(a)
L fla+1)
fla+2)
f(a+3)
y = f(z)
N a a+l a+2 a+3 Z

\j

By taking the height of each rectangle to be the value of the function at the left endpoint of each
subinterval, we obtain an upper sum U where

/OO (@) dz < g:f(z’):U.

By taking the height of each rectangle to be the value of the function at the right endpoint of each
subinterval, we obtain a lower sum L where

L_ff(iﬂ)g/w f(z) dz.

Hence, for a function which is decreasing on [a, col,

L=if(i+1)</oof(x)dx<if(i)zU.

Similarly, for any continuous function which is increasing on [a, oo,

L:f_’jf(i)g/w f(x)dx<§f<i+1):u

Example 20
2

o0
Write down a series which approximates / e * dx.
0

e 2 LS 2
/ e der ) e’
0 =0

EXERCISE 1.2

1 Write down a series which approximates:

o0 1 o0
a / dx b / e *dx
0 r+1 4
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2 Consider the function f(z) = e .
a Show that f(z) is decreasing for all x > 0.

o0
b Write upper and lower sums that approximate / f(z) de.
0

¢ Write an inequality that relates the sums in b to the integral.

3 Consider the function f(x) = L

wz'

a Show that f(z) is increasing for all z > 0.

oo
. . 1
b Write upper and lower sums that approximate / —— du.
1 x

¢ Write an inequality that relates the sums in b to the integral.
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ST . seQueNces

A sequence is a list of numbers, called terms, in a definite order.

We write the sequence aq, as, as, ... as {a,}, where a,, is the nth term of the sequence.
The sequence is infinite if it contains an infinite number of terms, so n € Z*.

The sequence is finite if it contains a finite number of terms, so n € Z, n < N.

For example, the sequence {a,, }, where a,, = i T € 7Z7F, denotes the infinite set of discrete values
n
4 . .
{3, 2, 3, 2, 2,..} in this order. a,
We can plot a,, against n to give: 1 L.
) .
5 L]
oy n
Consider the function f(z) = _T_ T TE R, z# —1.
xr
1
lim f(z)= lim —— x v
z—00 T oo z+1 1
xT
. 1
= lim T
—00 1
1 . . 1
= — {since lim = =0}
+0 T—00 T

1
=1

It follows that  lim =1 for neZ".

n—oo n+1

By considering n sufficiently large, the terms of the sequence will be as close as we like to value 1.

We say that L =1 is the limit of the sequence {a,}, where a, = %, necZt.
n
This is true even though the terms never actually reach the limit value 1.

A sequence {a, } has a limit L if for each ¢ > 0 there exists a positive integer N such that
lan, — L| <& for all terms a,, with n > N.

We write lim a, = L.
n—oo

If the limit of a sequence exists, then we say the sequence converges. Otherwise, the sequence diverges.

If a sequence converges, then its limit is unique.
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Proof:

Suppose {a,, } is a convergent sequence with two limits Ly, Ly where Ly # Lo.

If e=|L; — Ly|, then >0 since Ly # Lo.

Since lim a, = L, there exists Ny € Z* such that n > N ensures |a, — L1| < %
n—oo

Since  lim a, = Lo, there exists Ny € ZT such that n > Ny ensures |a, — La| < %
n—oo

Suppose n = max(Ny, No) is the maximum of N; and N.
oo |Ly— La| = |L1 — ap + a,, — Lo
< |L1 — an| + |an — Lo| {Triangle Inequality}
< lan — L1| + |ay — Lo

+

VANEAN
™ oo
IR

Thus for n = max(Ny, No) we have |L; — Lo| < e which is a contradiction
since |L; — Lo| =e.

Hence it is not possible for a sequence to have two distinct limits.

LIMIT THEOREMS FOR SEQUENCES

In this section we formally prove, in some cases very intuitive, limit results for some important sequences.

Archimedes of Syracuse stated that for any two line segments with lengths @ and b, where a < b, it is
possible to lay the shorter length a end to end a finite number of times to create a length greater than
the longer length b.

a a a a a a a
- t— Pt

This is summarised in terms of real numbers as the Archimedean property:

Given any € > 0, there exists N € ZT such that Ne > 1.

Result 1: For any real constant ¢, lim ¢ =c.
n—oo
Proof: Let a, =c for n e Zt.
la, —c|=|c—c=0<e forall €>0.

Forany € >0 and forall n >0 we have |a, —c| <e.

by the definition of a limit of a sequence {a,,}, m c=c.

li
n—oo

Result 2: lim = =0.
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Proof: Let a, = 1 for nezt.
n
|an—o|:‘l—o‘:l.
n n

For any € > 0 there exists N € Z* such that Ne > 1 {Archimedean property}
= <e
1

For n > N, < =.
N

S =2

for any € > 0, there exists N € Z* such that for n > N,

1 1

.- .. . . 1
by the definition of a limit of a sequence, lim a, = lim — =0.
n— 00 n—oo N

1

Result 3: If p>0, then lim — =0.
n—oo nP
Proof: Let a, = L1 or nezt.
npP

1

Suppose € > 0 is given. Then €? > 0 and by the Archimedean property there exists

1

N € Z* such that Ne? > 1.
1 1
=
N
1 1
since y = 2P, p > 0, is an increasing function, N < (e?)P =e.

for any e > 0, there exists N € Z* such that for n > N,

1 1 1

la, — 0] = —-0==<-—<e.
npP

npP

by the definition of a limit of a sequence,

lim a, = lim L:0 for all p > 0.

n— o0 n—oo N

Result 4: Consider the sequence {c"}, ¢ € R.

If 0<|c| <1, thesequence {c"} convergesto 0,so lim ¢" = 0.
n— o0

If |c| > 1, the sequence {c"} diverges. As n — oo, |c|" — oo.

Proof: If ¢c=0 then lim ¢"=0. {Result 1}

n—o0
Let a, =c™ for n € Z*, where c is a constant such that 0 < |c| < 1.
If we let |c] :L, then d=-~ —1>0.

14+d |
By the Bernoulli Inequality (see Exercise A question 9), since d > 0,
(1+d)™>1+nd>0forall neZt.
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" ! L <1 forall nezt.

cl = <
| 1+d)” ~1+nd nd

Given € >0, &d > 0, so by the Archimedean property there exists N € Z™ such
that Ned > 1.

1<5
Nd ’

. _ | _ — || — w L L 1 >
lan, — 0] =|c* — 0] = |c"| = || <— <5 <e for all integers n > N.

by the definition of the limit of a sequence, lim a, = lim c¢" =0.
n—oo n—oo

If |¢] >1 then |¢|]=1+¢€ forsome &> 0.
|| = (14¢&)" > 1+ ne by the Bernoulli Inequality.

Now {1+ ne} diverges to infinity as n — oo, so by comparison, |c|" — oo.

THE SQUEEZE THEOREM FOR SEQUENCES

Suppose we have sequences of real numbers {a,}, {b,}, and {¢,} where a, <b, <c,

forall neZt. If lim a,= lim ¢, =L exists, then lim b, = L.
n— o0 n—oo n— o0

Proof: Suppose L = lim a, = lim c,.
n—oo n—oo

Given & > 0 there exists a natural number N such that if n > N then
la, — L] <e and len, — L] <e forall n>N
—e<a,—L<e and —-e<c¢,—L<e forall n> N.

Now a, <b,<c¢,, so a,—L<b,—L<c¢,— L.
—e<b,—L<e forall n>N
|b, — L| <& forall n> N.

Hence lim b, = L.
n—oo

The Squeeze Theorem still holds even if the condition a, < b, < ¢, only applies for every natural

number from some point n > k. The finite number of sequence terms from n =1 to n =k does
not affect the ultimate convergence (or divergence) of the sequence.

BOUNDED SEQUENCES

A sequence of real numbers {a,} is said to be bounded if there exists a real number M > 0 such
that |a,| < M forall ne€Z™.

We can deduce that: .
Every convergent sequence is bounded.



CALCULUS 61

Proof: Let {a,} be a sequence where lim a, = a.
n—o0

If we let € = 1, then by the definition of convergence there exists a natural number N such
that |a, —a| <1 forall n> N.

But from Corollary 3 of the Triangle Inequality, |a,|— |a| < |a, —a| <1 forall n> N.
|an| <1+ |a| forall n> N.

If we define M as the maximum value in the set {1+|al, |a1], ...., |ay—1|} then |a,| < M
forall neZ".

the sequence {a, } is bounded.

COMPARISON TEST FOR SEQUENCES

Consider sequences {a,}, {b,} such that 0 < a,, < by,.
If {a,} diverges, then {b,} diverges.

If {b,} converges, then {a,} converges.

ALGEBRA OF LIMITS THEOREMS

Suppose {a,, } converges to a real number a and {b,,} converges to a real number b.

1 lim (a,+0b,)= lim a,+ lim b,=a+b
n—o0 n—0oo n—oo

2 The sequence {anb,} converges and lim (a,b,) = ( lim an) ( lim bn> = ab.
n—oo

n—oo n— oo

o lim a, a

. _ n—oo _ Y

3 If 570 then  lim (bn> ~ Tm b, b
n—oo

These results can be extended to finite sums and products of limits using mathematical induction.
Proof of 2:
For n € Z*, we have a,b, —ab= a,b, — apb+ a,b—ab
= an(by, — b) + b(a, — a).
By the Triangle Inequality, |a,b, — ab| < |an (b, — b)| + |b(an — a)| = |an||bn — b + || |an — al
Since {a,} and {b,} are convergent sequences, they are bounded and there exists My, My > 0 such

that |a,| < My and |b,| < My forall n € Z*. If we let M be the greater of M; and M,, then
|anby, —ab] < M |b, —b| + M |a, —a| forall neZ".

Since lim a, =a and lim b, = b, for any given € > 0 there exist positive integers Ni, Ny
n— o0 n— o0

such that |a, —a| < £ forall n> N;, and |bn, — b| < £ forall n> No.
2M 2M

Letting N be the greater of Ny and Ns, then |a,b, —ab] < M (ﬁ) + M (ﬁ) = ¢ for all
n > N.

Hence lim (anb,) =ab from the definition of the limit of a sequence.
n—oo
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We have applied the formal definition of the limit of a sequence to rigorously establish some key results
for sequences that can now be used to deal very efficiently with more general problems.

4 n

Suppose a,, = (3) + 3_9 forall neZ". Find lim .
n

n—oo

By the generalised version of 1 of the Algebra of Limits Theorems,

n n
lim [(é) +§—9} ~ lim (é) + lim 2+ lim (-9)
n—00 5 n n—oo \ 5 n—oo N Mm—00
provided each of these limits exist.

. é n _ - é
Now nlgréc (2) 0 {since 0<: <1}

s (3)= lim 3x lim ~=3x0=0
n

n—oo n—oo n—oo N
lim (—=9)=-9
n—o0
tim [(£) +2-9]=0+0-9—=-9
n—oo n
Example 22
2n2 +4n — 3 .
Let a, = il Dt forall n€Z". Find lim a,.
— 4lnn n— oo
4 3
Aar ===
L . 2n? +4n — 3 %
Dividing the numerator and denominator by n?, n2 +an = LA
n? —4lnn 1 4lnn
-=
3
I (2 4 _)
lim a, = nvo i n n? (\;
—ee T ( 4lnn)
lim GRAPHICS
n—oo CALCULATOR
INSTRUCTIONS
Using the limit laws, lim % =0
n—oo N

You can use your calculato

. 4 3 . . 1 . 1 T
i (o2 2) = @ (5) -3, () e

=2+0+0=2
Now O<Ilnn<n forall n>1
0<ln—n<l
41nn 4
0< — € = )
n n

Since lim 0=0= lim ==4Lm 2,

n—oo n—oo N n—oo N
lim 41n2n =0 {Squeeze Theorem}
n—oo n
using 3 of the Algebra of Limits Theorems lim a, = 12—0 =
n—oo —
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If a,= sinn for all n € Z*, prove that lim a, = 0.

n n—oo

n—oo \ bp

are convergent sequences.

However, since —1 <sinn <1 forall neZ",
1 sinn 1

—— < <= forall neZ".
n n n

Now: " lim (—l) — D= [ =,

n—oo n n—oo n

using the Squeeze Theorem, lim (Sinn> = 0.

n— oo n

We cannot apply the lim (an) = % result as neither {sinn} nor {n}

WRITING A SEQUENCE AS A FUNCTION

Consider a sequence {a,, } which can be expressed as a real-valued function f(x). We write a,

n € ZT, for f a real-valued function.
The behaviour of f(z) as x — oo also describes how {a,} behaves as n — oc.

We can therefore use what we know about the limits of functions as * — oo
to help investigate the limit of a sequence:

1 Suppose a, = f(n), ne€Z*. If lim f(z) = L exists,

r— 00
then lim a, = L.
n—oo

2 If lim a, = L exists and g is any function continuous
n—oo

at x =1L, then lim g(a,) = g( lim an> =g(L).

n—00 n— 00

EXERCISE J.1

1 allows us to use
I’Hopital’s Rule.

1 Using the appropriate Algebra of Limits Theorems, evaluate lim a,, when it exists:

n—oo
1
a a,=——, neZt b a,=In(1+n)—1Inn, nezt
n+n3
3n2 -5 2 3
¢ ap=— """ pezt d an:n(n+)— " nezt
5n2 +2n —6 n+1 n2+1

4
e ap,=+vVn+1—+/n, neZ" f an:<2n_3) , neZt

3n+7

2 Determine whether the following sequences converge:

() ) A
(n+3)! n2+1-—n Vn

o o) Cera@) o ()

fn),
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3 Find lim a, where ap=— + =+ 4 ..+
n— oo ’I’L2 'I’L2 TL2 n2
L If it exists, find lim a, for:
n—oo
1 \" . 1\" n
a a,=—1|, ne’ b a,=(2+=-), nez
1+n n

5 Prove part 1 of the Algebra of Limits Theorems:
If {a,,} converges to a real number a and {b,} converges to a real number b, then

lim (a, +0b,)= lim a,+ lim b, =a+Db.
n—o0 n—oo n—oo

6 Use the formal definition of a limit to prove that for n € ZT, lim <

n— o0

3n+5) B

3
™m—4 7

7 If lima, =a, lim b, =0, and a and § are real constants, use the Algebra of Limits
n—oo n—oo

Theorems to prove that  lim (aa, + 8b,) = aa + Bb.
n—oo

Hence prove that lim (a, — b,) =a —b.
n—oo

MONOTONE SEQUENCES
A sequence {a, } is monotone (or monotonic) if a,1 >a, or a,i1 <a, foralln.

To show that a sequence is monotone we show that either a,41 —a, >0
orthat ani1 —a, <0 forall necZ".

Alternatively, suppose a,, can be represented by a differentiable function f(z), x € R, > 1 such that
a, = f(n) forall neZ*. If f'(z) >0 forall z>1, orif f/(z) <0 forall z>1, then {a,}
is monotone.

THE MONOTONE CONVERGENCE THEOREM

A monotone sequence of real numbers is convergent if and only if it is bounded.

For example:

e The sequence {a,} where a, = n, n € Z*, is a monotone increasing sequence which is
unbounded. Clearly {a,} diverges.

1 . . . . .
e The sequence {a,} where a, =1— =, n € ZT, is a monotone increasing sequence which is
n
. 1
bounded since |a,| = ‘1 — —‘ <1 forall neZ*.
n

We have shown previously that {a, } is convergent and lim a, = 1.

n—oo
EXERCISE J.2
. 2n—-T7 .
1 a Prove that the sequence {u, } with nth term w,, = s
n
i monotone increasing il bounded.

b Determine whether the following sequences are monotone and bounded, and calculate their
limits if they exist:

=) =)
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Ix3xdx...x(2n-1 .
2 Prove that the sequence { T, (2n—1) } is convergent.
n:
3 The sequence {z,} is defined by =y =0, 2z, =4+ 32,_1.
a Use mathematical induction to show that {z,} is monotone increasing.
b Evaluate w1, z3, o3, ...., £11, and hence suggest an upper bound for {x,,}.
¢ Use mathematical induction to prove that {x,,} is bounded.
d Hence find lim z,.
n—oo
. 1 1 1 1
4 a Find the values of 1+ 3, 1+ T 1+—1, 1+—1
I+ 1+ —— 1+ -
141 14—
1+I
b Give a recursive definition for the sequence above in terms of w,,.
Show that {u,, } is bounded but not monotone.
d Given that {u,} converges, find the exact value of lim w,.
n—oo
5 a Consider the sequence {u, } defined by u; = a (a positive constant) and
Upi1] = % (un + i) forall neZ*.
Un
Use your calculator to find wq, us, us, ...., ug when:
i a=5 i a=1 iii a of your choice.
b Is {u,} monotone for all a > 0?
¢ Do your experimental results in a suggest the existence of a limit L such that lim w, = L.
n—oo
If so, find L.
d If uy =a where a >0 and wu,q41 = % (un + i), find lim w, given that it exists.
Un n— oo
e State lim wu, given that {u,} is defined by u; =6 and w,y1 = % (un + i)
n—oo Un
f Suggest a recurrence relationship for generating values of /.
n
6 a Expand (1 + l) , n €Z"%, using the Binomial Theorem.
n

b Define {e,} by e, = (1 + l) and show that e,, equals:
n

13023 0-D) (-2 [0 0-D (-

¢ i Showthat 2<e, <epy forall neZt.

)

. 1 1 1 1 1 1
ii  Show that €”<1+1+§+§+““+E<1+1+§+2_2+""+2n—1 for all

nezt.
ili Hence show that {e,, } is convergent.

d i Giventhat lim (1 + l) = e~ 2718, show that lim (1 - l) =e L
n—oo n n—oo n
|
ii Hence show that lim (%) =0 using the Squeeze Theorem.

n—oo \Nn
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T INFINITE SERIES

Let {ui, ug, us, ....} be an infinite sequence.

We can form a new sequence {S,} = {51, Sa2, S3, ....} by letting

Slzul
So = u1 + us

n
Sn, =uy +us + ... +u, = Zu,
1=1

The value S,,, which is the sum of the first n terms of {u,}, is called the nth partial sum.

Each term of {S,,} is a finite series.
oo
If lim S, = u, exists and equals some finite value S, then the infinite series is convergent.

—
n— 00 =1

Otherwise it is divergent.

Let {u,} be defined by u, = r"~! where r€R, r#0, ne€Z".
Find an expression for S,,, the nth partial sum of {u, }, which does not involve
a summation.

n n o
Sp=Yu=Yr"t=1+r+r2+. 4"}
= =l

. rS,=r+r2+r34 "
rS,—S,=r"—1
_rt—1
L]

oo
It is often important to know when lim S, = ) w, exists, and if so, what its value is. In general
n—oo n=1

it is not possible to write S, as an explicit expression as we did in Example 24. However, we shall
see that more difficult functions can often be expressed as simpler infinite series. Great mathematicians
such as Euler and Newton did much of their foundation work using infinite series representations of
functions, though it was not until much later that other mathematicians such as Cauchy and Lagrange
rigorously established when such representations were valid.

Since convergence of a series is in effect convergence of a sequence of partial sums, many of the sequence
results apply. For example:

o0 o0
If > a, and ) b, are convergent series, then
n=1 n=1

o0 o0
e > ca,=c) a, wherecisa constant, and
n=1 n=1

o0 o0
(@, £bn) = > an £ > b, are also both convergent.

n=1 n=1

118
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However, because the form of the sequence of partial sums is generally too unwieldy to deal with using
our earlier methods, we need a special set of tests and conditions for determining when the limits of

these partial sums exist.

[e.e]

We start with a useful result which can tell us something either about a series Y a,, or its associated

=1
sequence of general terms {a,, }: "

o0
If the series Z an, 1is convergent then lim a, = 0.
n=1

n— oo

Proof: Let S,=a1+ax+...+a,
ap = Sp — Sn—1

o0

Now Y a, is convergent, so {S,} is convergent (by definition).
n=1
Letting lim S, =S5, lim S, 1=S5
n—o0 n—o0
lim a, = lim (S, —S,-1)=S5—-S5=0
n—oo n—oo

&)
We shall show later that even though  lim L 0, >
n=1

n—oo N

3=

diverges extremely slowly.

Therefore, the converse of the above theorem is not true.

However, we may establish the following Test for Divergence:

n— o0 n— o0

o0
If lim a, doesnotexist, orif lim a, #0, then the series Y. a, is divergent.
n=1

o) 2
Show that the series diverges.
nZ::l 5n2 + 4 &
c o n2
The nth term of the series is a,, = ———.
5n2 + 4
o ’I’Z2
lim a, = lim
n— 00 n—oo bn2 +4
. 1
= lim 7

Since lim a, # 0, the series diverges.

n— oo

The Test for Divergence puts no sign restriction on each term of {a,}. However, all of the following

series tests only apply to series with positive terms.
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THE COMPARISON TEST FOR SERIES

Let {a,} be a positive sequence, so a, > 0 for all n.

(e @] o0
If there exists a convergent series »_ b, such that a, < by, then ) a, is also convergent.
n=1 n=1

o0 o0
Conversely, if a, > b, and > b, diverges, then so does > ay.
n=1 n=1

Proof of the first part:

Let {A,} and {B,} be the sequences of partial sums associated with a,, and b,, respectively.
Since ay, b, >0, {A,} and {B,} are monotonic increasing.
Suppose a,, < by, and that {B,} is convergent with lim B, = B.

n—oo

0< A, <B, <B.

A, is also a bounded monotonic sequence, and therefore converges by the Monotone
Convergence Theorem.

With a minor adjustment to the proof, the result can be shown to hold if a,, > 0 for all n.

oo
However, the difficulty in using the Comparison Test is in finding a suitable " b,,.

An appropriate geometric series often tends to work. Indeed, convergent geometric series are used in the
proofs of some of the most general and important convergence tests.

GEOMETRIC SERIES
A series ioj ar is a geometric series if there exists a constant r, called the common ratio of the series,
k=1
such that ap, 1 =rap forall k€ Z*, and a; = a is a constant.
In this case f ay=a+ar+ar’+ar+ ... = i ark=1
k=1 k=1
The nth partial sum S, Z ark a(l+r+7r?+ ... +r"h).
Since a € R is a constant it sufﬁces to examine Z r*=1, or equivalently ioj rk.
k=1 k=0
oo oo
If |r| <1, then the geometric series kX—:o r® converges with sum S = kz_:o rk - 1 -

If |r| > 1 then the geometric series diverges.

Proof:

o0
If =1 then > 1" '=14+1+1+4+1+.., and the nth partial sum is

k=1
Sp=Y1F1=14+1+..+1=n
= —_———
k=1 n times

Now lim S, = lim n DNE, so Z 1% diverges.

n— o0 n—00 k=0
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[ee]

If »=—1 then ) (-1)*!=1-1+1-1... and the nth partial sum is S, = {

k=1

lim S,, DNE as S,, alternates between constants 1 and 0 as n — oo.

n— oo

n
If |r|#1 then S,=Y rFl=14r+.. +r"?
k=1 n _
== 11 {from Example 24}

r—

. . r—1
lim S, = lim
n— 00 n—oo 1T —1

By Result 4 of the limit theorems for sequences, lim " =0 for |r| <1
n—oo

and lim " DNE for |r|> 1.

n—oo
. 1 = 1 .
Hence for |r| <1 lim S, =-——, andso ) r®=—— is convergent.
n— oo = =0 =177

[e.°]
For |r|>1, lim S, DNEandso Y r* diverges.

Example 26
o0

Test the series )

n=1

——— for convergence.
2" 4+ 1

Now 2" is positive for all n, and 2" 4+ 1 > 2™,

0<——<—=(1)" forall nez+.
20 4= 1l 2

But ) (%)n is a convergent geometric series and therefore,

n=1
o0
by the Comparison Test, also converges.
=l 2n +1

We cannot use the Comparison Test in the same way as in Example 26 to test the series

directly.
THE LIMIT COMPARISON TEST

o o0
Suppose that > a, and > b, are series with positive terms.
=il n=1

1, n odd
0, n even.

S 1

2.

2n —1
n=1
for convergence. However, the following test may be useful when the Comparison Test cannot be applied

1 If lim 2% =¢, ¢>0, then the series either both converge or both diverge.

n—oo bp

o0 o0
2 If lim <2 =0 and > b, converges, then > a, converges.
n— oo bn n=1 n=1
a o0 [ee]
3 If =—o00as n—oo and > b, diverges, then > a, diverges.
n n=1 n=1
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Proof of 1:

Since ¢ > 0, O<s:§.

Since  lim Z—" = ¢, using the definition of a limit there exists N € ZT such that
n—oo bn
n _¢l<< forall n>N
bn, 2
_fcm_ 8
2 bn 2
C o 3

2
b (5) <an< ()b forall n>N
= X (3¢
Now if > b, converges then so does > (7> by,.
n=1 n=1

o0
Hence by the Comparison Test, Y. a, also converges.
n=1

oo oo
However, if > b, diverges then so does (g) by,

=il n=1

o0
Hence by the Comparison Test, > a,, also diverges.
n=1

o0
. 1 .
Test the series T for convergence or divergence.
n=1 -

1 1
Let Ap = ﬁ and bn = 2_”
. an, 25
lim — =
n—oo bp n—oo 2" — 1
1

n—>ool_ 1
2)

=1 {since lim (%)n = 0}

n— oo
&) o0 1
Since — is a convergent geometric series, », ——
n=1 2" n=1 2" —1
converges also. {Limit Comparison Test 1}

THE INTEGRAL TEST

The Integral Test links the sum of a series to the integral of a positive function.
o) oo

We have seen that if a is an integer, Y f(i) ~ / f(z)dx
L= a

) o
In particular, when a =1, > f(i) =~ / f(x)dzx
1

i=1
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The Integral Test is:

Suppose that f is a continuous, positive, decreasing function on [1, oo .
Let an, = f(n), n€ZT, so that the terms in {a,} are all positive.

o0
1 If f(x)dz is convergent, then ) a, is convergent.
n=1

oo o0
2 If f(z)dx is divergent, then Y a, is divergent.
1

n=1

o0
Clearly this test is only of practical use if / f(x)dxz can be evaluated relatively easily.

Proof of 1:

If f(z) is a continuous, positive, decreasing function, then we can approximate the integral

o0
/ f(z)dx using lower and upper sums:
1

/ A
a;
a, @)
oY=/ y=f(z)
anﬂ Ap—1 >
1 2 3 n 1 2 3 no
The lower sum The upper sum
[ee]
a2+a3+....+an+....</ f(x)dx a1+ ag 4 o+ ap_q + .. /
&9 )
Z (11+/ f(z / f(z Z

oo o) oo
Hence, / f(z)dx < an < aq +/ f(z)dx
1 n=1 1

o o0
If / f(xz)dxz converges then the sequence of partial sums {S,} of > a, isbounded and
1 n=1

monotonic increasing, and hence convergent also.

From the proof we also gain the useful result:

If f(x) is a continuous, positive, decreasing function on [1, co [, then

/f )dz < Zan\a1+/1 f(z)da.
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Example 28
e 1
Test for convergence.
ngl n2 +1 g
1 . . .. .
flz) = 1 is continuous, positive, and decreasing for = > 1.
X
the conditions to use the Integral Test are satisfied. ’\)
g by GRAPHICS
Now dr = lim dx CALCULATOR
1 #2241 booo J; x2+1 INSTRUCTIONS
= lim [arctanz]’
b—o0 You can use your
= blggo (arctan(b) - %) calculator to estimate
T m T o0 \ o Q
=2 171 / f(x)dx
) — 1 1 —
. ; . =S
. / f(x)dx is convergent, and so is o
1 n=1

Example 29

o0
. . 1
For what values of p is the series — convergent?
n=1 "

If p<O0 then lim ip = lim n!?l which diverges, and if p =0 then lim - 1.

n—oo N n— 00 n—oo nP

In each of these cases, lim ip # 0, so by the Test for Divergence, the series diverges.
n—oo M

If p>0 then lim ip = 0. Since the function f(z) = Lp is continuous, positive, and
n—oo N &
decreasing for x > 1, we can apply the Integral Test:

o) b
1 . 1
— dx = lim —dx
1 xP b—00 1 ge®

1
=_— lim b7 !
1—-p b—oo 1—p
{—_ if p>1
DNE if 0<p<l1

o b
For p=1, / Lz = lim Ldz = lim [ln|$|]li
1 ] b—oo

z b—oo 1

= lim (Inb) which DNE
b—oo
o0

by the Integral Test, the series

n=1"T

1

- converges if p>1 and diverges if p < 1.
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p-SERIES

. 1 . . . .
The series ) — s called the p-series, and can be used to rapidly test the convergence of series of
—_1 n
this form.

As shown in Example 29:

o0
The p-series Y ip converges if p > 1 and diverges if p <1
n=1 T

[e.°] o]
. 1 .. .
For example, the series Z = > —5+ isdivergent since p=3 <1.
n=1 n=1 1"

12 ﬂ|~

S

The p-series with p=1 is =1+3+1+31+4... andis called the harmonic series.

I
—

n

This is an example of a series which is divergent even though lim a, = lim

n—oo n—oo
Example 30

g = . 1
Test for convergence or divergence Y sin (—)
n

=0.

3=

n=1
1
Let z =
n()
lim - lim sin(@) =1 by the Fundamental Trigonometric Limit.
n— 00 1 ac~>0 T
n

o0
by the Limit Comparison Test > sin (l) and Z either both converge or both
n

. m=1l n=1 T
diverge.
g g g | g = 1 g
Since the harmonic series > — diverges, Y. sin (—) also diverges.
n=1"T n=1 w®

EXERCISE K.1

1 Determine whether the following series converge or diverge using an appropriate geometric series,
the Comparison Test, or the Test for Divergence.

X 1 ‘” n? X 34 2n X /1 1
a > L b > — " c d (_ . _)
7;::1 e2n 7;::1 3(n+1)(n+2) nzzjl 6m nzzjl n n?

[e.e]

on2
to show that the series Z nts

1 vV/5+n7

are convergent using the Comparison Test.

2 Use the Limit Comparison Test with b,, = = is convergent.

8
1 g

o0
. 1
3 Determine whether — and
n=1 T

n=1

4  Determine whether the following series converge or diverge using the Comparison Test or Limit
Comparison Test.

1 X, sin?n

b
\/n(n—O—l)(n—l—? n=2 3/n(n+1)n-1) ¢ nZ::l ny/n
N ESEEEY 1

-1 ne1 1+3" 5 Inn

[- %
i §
3
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oo
5 Find all the values of z € [0, 27r] for which the series > 2" [sin" 2| converges.
o0
6 Findcif > (1+c) " =2
n=2

7 Use the Integral Test to determine whether the following series converge:

[e.e]

n > 2 X Inn S 1
a —_ b ne " c — d
nz::1 n? +1 nZ::1 712::1 n nZ:; nlnn

X 1

8 Show that § < > — 1+
n=1

oo
9 Determine the values of p for which the series > converges.

n—o MPInn

10 Suppose Z a, is convergent, where a, # 0 for all n € ZT. Prove that Z L is divergent.

n=1 =1 9n

oo
11 Consider the p-series ) L with p=3. Let S, = Z be the nth partial sum.

= Vn - \/‘
a Find lim —
n—oo \/_
1 1 1 n
b Show that S, 4+t == —.
\/_ vn N

¢ Hence prove that the sequence {S,,} of partial sums diverges.

oo
1 . .
d Does >, — converge or diverge? Explain your answer.
n=1 n

[ee]

2
12 Consider the series > g—n

n.oo _a9—n(,2
a Use induction to prove that the nth partial sum is Z ;— 33 (n2 R 3).
b Find lim S,.
n— o0
¢ Does the series ) 0 converge? If not, explain why. If so, find the value of the sum of the
n=1

series.

APPROXIMATING BY TRUNCATING AN INFINITE SERIES

The tests for infinite series can help us determine whether a series is convergent or divergent.

However, even if we prove an infinite series is convergent, we do not in general have techniques to

determine the value of the limit S = i an. It is only in special cases such as geometric series that
n=1

we can do this.

Instead, we can approximate the sum S of a convergent infinite series using a partial sum Sg.
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o0
Suppose we approximate the sum of a convergent series S = > a,, by the sum Sy, of its first k terms:
n=1

00 k
ap~ > ap=a1+az+ ... +a; forsome keZT.
n=1 n=1
If f is a continuous, positive, decreasing function on [k, co[, then we can apply the Integral Test.

[e.°]
The error in the approximationis Ry =S — Sy = > a, and the error satisfies
n=k+1

f(z)dz < R < /]c f(z)dz.

k+1

o0
Suppose we can use the Integral Test to show that > a,, is convergent, where a, = f(n).
=1
. n
a Show that the error Ry, in approximating > a, by aij+as+...4+a; forsome ke Z*
o0 [e.e] n=t
satisfies f(z)dx < Ry < / f(z)de.
k-+1 k
. . 1
b Hence determine the number of terms necessary to approximate » —  correct to two
—_1n
decimal places. n=t
00 k Yi
a Theerror R, =S5S—Spx= > an— >, an a,
n=1 n=1
= Qk4+1 t+ Ak42 + Q43 + ... 7
2 y=f(z)
From the areas of lower rectangles, we deduce s \
> NERTs
R = ags1 + agao + apys + ... < f(z)dz. g
k
Using the upper rectangles from xz = k+1 onwards, 12 3 z
we deduce
(e.e]
R = ag+1 + agyo + agys + ... > f(z)dx
k+1
o0 oo
Hence f(z)de < Ry < / f(z)dz as required.
k+1 k
b For the sum i L. we have flz) = =
=3 =B
o b
1 1 1 1 1
Hence R Sdo=lim [~ ] = lim (—o ) = o
ence i < /k B T, T e T ) T
To approximate correctly to two decimal places, we require Ry < 0.005 = 2%)0
1_ 1
2k2 200
k* > 100
k>10 {as k>0}
o0
Hence we require 11 terms to correctly approximate > i?) to 2 decimal places.
n=1"
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EXERCISE K.2

o0
1 a Estimate the error when ) 5L is approximated by its first 12 terms.
n

2
n=1

oo
. 1 .
b How many terms are necessary to approximate nzl ~ correct to 6 decimal places?

o0
. . . -1
2 The nth partial sum of a series > a, is S, = L
n=1 n+1
o)
a Find a,. b Write ) a, inexpanded form and find its sum.
n=1
3 a Use your calculator to evaluate the partial sums Sy, So, S3, Sy, =
S n . . . /
Ss, and Sg for Zl CESE Give your answers in rational form. GRAPHICS
n= CALCULATOR
b Conjecture a formula for S,,. INSTRUCTIONS
¢ Use mathematical induction to prove your conjecture.
) n
d Hence find —_—
ngl (n+ 1)!

o0
4 The harmonic series is defined by % =l4+3+z+34+...

n=1

Consider the following sequence of partial sums for the harmonic series:

S1=1 ) In Example 29 we saw the

Sy =1+3 most efficient proof that the

Sp=1+1+ (% + %) Harmonic series is divergent.
14 % i (% n i) T % This is an alternative proof.
_ 1 1,1 1,1 ,1,1

Ss=1+3+(3+1)+(E+5+7+3)

S1b+ D+ Gririeh) —1+3
a Use the same method to find an inequality involving Sie.

Conjecture an inequality involving Sam, m € ZT.

Use mathematical induction to prove your conjecture.

¢ Show that Som — 0o as m — oo and hence prove that {S,,} is divergent.

ALTERNATING SERIES
Thus far, we have dealt with series with only positive terms.

An alternating series is one whose terms are alternately positive and negative.

For example, 1 -1+ 31 -3+ — 5 +....

THE ALTERNATING SERIES TEST

[e @]
If the alternating series ) | (—1)"_1 b, =b; — by +bsg — ... satisfies 0<b,1 < by
n=1

forall n€Z", andif lim b, =0, then the series is convergent.
n—oo
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The theorem also applies if the first term is negative, since we can multiply through by constant —1 and
proceed as above.

Proof:

The (2n + 2)th partial sum of the series is  Sapi2 = b1 — by + ... — bay, + bapt1 — bant2,
where the b; are all non-negative and non-increasing.

We therefore find that  So,11 = Sap + bant1

Sont2 = San + bany1 — bong2

Son+3 = Sont+1 — bany2 + banys

= Sont2 + banys

Since bapt1 = banyo = bapts, we find  Sapp1 = Sonts = Santa = Son.
Also, Soni2 = (b1 —b2) + (bs — ba) + ... + (b2nt+1 — bant2)-
Because the b; are non-increasing, each expression in brackets is > 0.
Hence S, > 0 for any even n, and since So,+1 = Sony2, S, =0 for all n.
Finally, since So,4+1 < b1, we conclude that b; > Ss,11 > Sonts = Sonyo = Son = 0.

Hence the even partial sums Ss,, and the odd partial sums Ss, 1 are bounded. The So, are
monotonically non-decreasing, while the odd sums Ss,, 11 are monotonically non-increasing. Thus
the even and odd series both converge.

Since  So,41 — S2n = ban+1, the sums converge to the same limit if and only if  lim b, = 0.
n—oo

The convergence process is illustrated in the following diagram.

0
by
0
bl_ b2 bl
0
bi—by+ by by
0
t by
bi—by+ b3 — b,
even partial sums odd partial sums
0 °
by
lim S,
n—0o0

If 0<byy1 <b, forall n € Z" but lim b, # 0, then the series will eventually oscillate

n— o0

between the two values lim Ss, and lim So,41.
n—oo n—oo

even partial sums odd partial sums

f f by

n—»00 n—>00
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o0 n—1
Show that 1—1+1—1+ Z 1)

converges.

Compare this with
the harmonic series

.. . . as) hich di !
This is an alternating series of the form > (—=1)""1b,, R

n=1
1
where b, = —.
n

. 1 1 . .
Since —— < —, the series satisfies 0 < b,4+1 < by,
n+1 n

forall neZt.

Also, lim b,= lim L =0

n— oo n—oo N

1)77, 1

converges by the Alternating Series Test.

o)
>
n=1

Suppose a convergent infinite series converges to a sum S.

If the nth partial sum S, is used to estimate the sum S, the truncation error is defined by
R, =|S — Syl

THE ALTERNATING SERIES ESTIMATION THEOREM

o0
Suppose S = Y (—1)""'b, is the sum of a convergent alternating series,
n=1

so0 0<by1<b, forall n€Z" and lim b, =0.

n— o0

The truncation error R, = |S — Sp| < bpg1.

Proof:

§ Jelp, — i(_l)k_lbk
k=1 k=1
(=1)"bpg1 + (1) by yo + ...
(*l)n [(bn+l - bn+2) + (bn+3 - bn+4) + ]
Since b, > b, forall r€Z", b,y =byi .1 forall reZ".
(b1 —bny2) + (bpyg —bpia) +.... 20
=15 — Sp| = (bpt1 — bny2) + (bnys — bnga) + ...
= bnt1 — (bnt2 — bnts) — (bnta — bnys) —
= bnt1 — [(bn+2 — buts) + (bnta — bugs) + ...
K bpir since  [(bnt2 — brnys) + (bpya — bpys) +...] =0
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o0 _1\yn—1
Find the sum of ) ( 1)' correct to 3 decimal places.
=l o
= 1
This is an alternating series of the form  _ (—=1)""'b,, where b, = —.
n=1 2
Now 0<—— <L so 0< bpus <b, forall neZt.
(n+1)! n!
Also, 0<~ <1
n! n
since lim * = 0, lim 1= lim b, =0 {Squeeze Theorem}
n—oo N n—oo n! n— o0
the series converges by the Alternating Series Test.
Now S=1-2+4+1-L+—L+d-+....
Notice that by = =35 < 5355 = 0.0005
and Se=1—4+§— 57 + 155 — 730 = 0-631944
Now by the Estimation Theorem, |S — Sg| < by,
—b; <S5 —8 < by
Se —br < S < S+ b7
1 1
0.631944 — z5:5 < 5§ < 0.631944 + 5
0.6317456 < S < 0.6321424
S ~ 0.632
ABSOLUTE AND CONDITIONAL CONVERGENCE
(o] [e.°]
Given any series »_ a, we can consider the corresponding series > |an| = |a1| + |az| + ....
n=1 n=1
whose terms are the absolute values of the terms of the original series.
o0 o0
A series > a, is absolutely convergent if the series of absolute values > |a,| is convergent.
=il n=1

Clearly if a, > 0 for all n, absolute convergence is the same as convergence.

)n—l

o0
. ! . . .
A series such as > (G which is convergent but not absolutely convergent, is called
n=1 [z

conditionally convergent.

So what is important about absolute and conditional convergence?

We all know that the addition of scalars is commutative, so a+b = b+ a. Furthermore, if we have a

N
finite sum Z an, then we can also reorder the terms without affecting the total sum. Infinite series
n=1
which are absolutely convergent behave like finite series, in that we can reorder the terms of the series
without affecting the sum. However, the same is not true for conditionally convergent series!
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_ 1 1 1 1 1 1 1

For example, let S=1-5+5-3+z—g+tz—g+ (1)
1o __ 1 1 1 1
39=35—3tg st~
$5=04+3+0-24+0+3+0— %+ )

Adding (1) and (2) gives 2S5 =1+0+1-32+14+0+21 -1+

3qQ 1 1 1 1 1
55—1+§—§+g+7—1+..

We thus obtain a rearrangement of the original series, but with a different sum! In fact, Riemann showed
that by taking groups of sufficiently large numbers of negative or positive terms, it is possible to rearrange
a conditionally convergent series so it adds up to any arbitrary real value.

THEOREM OF ABSOLUTE CONVERGENCE

o0
If a series ) a, is absolutely convergent then it is convergent.
n=1

Proof: By the definition of absolute value, — |a,| < a, < |a,|

<
0 < ap + |an| < 2]ay]

(o) oo
Now if ) a, is absolutely convergent then 2 |a,| is convergent.

=l =1l
oo
by the Comparison Test, »_ (an + |a,|) is convergent.
n=1

oo o oo
But Y a,= ) (an+an|) — > |a,| since the series is absolutely convergent.
n=1 =l n=1

(o] (o.0) o0
since > (an +|an|) and > |a,| are both convergent, > a, is convergent.
n=1" n=1 n=1

Example 34

o0
Show that > Coszn is convergent.
n

n=1

i’é cosn cos 1 cos 2

= 3 P + .... has terms with different signs, but is not an alternating series.
n=1 T
cosn 1 .
However, |——|< — forall n€R, and ) 6 — is convergent.
n?2 n2 = n?
> cosn
by the Comparison Test, > . ‘ is convergent.
n

n=1

o
by the Theorem of Absolute Convergence, > COS;L is also convergent.
n=1 ™
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THE RATIO TEST

The Ratio Test can be used to determine whether a general series is absolutely convergent, and hence
convergent:

an41
an

1 If lim

n— oo

o0
<1, then ) a, is absolutely convergent.
n=1

o0
2 If lim a”“‘ >1, then 3 a, is divergent.
n=1

n—oo an

an+1
an

3 If Ilim =1, the Ratio Test is inconclusive.

n—oo

Proof of 1:
Let u, = |a,|, with a, #0 forall ne€Z".

Suppose that  lim Intl —_ [ <1, so given ¢ > 0 there exists a positive integer N
n—oo Un

Unp+1 _ L
Un,

such that <g forall n> N.

In particular, as L <1 we can choose r such that L <r <1 andlet e=r— L > 0.

u
Now ”—H—L‘<5
Un,
u
"_""I_L<g
Un

Intl e+ L
Un

U
o+l
Un,
since n>N, unii <rTuy
UN+2 < TUN+1 < r2uN
UN+3 < TUN42 < r3uy, and so on

UN+1 +UNt2 T UN43 F ... < ’U,N(T‘ == r? =F re A )
Since 0<r<1, r+r2+r3+... isa convergent geometric series.

by the Comparison Test, un{1 + unyt2 + UNn+3 + .... 1s also convergent.

o0 o0
since  wy + ug +ug + .... +uy is finite, > wu, = Y. |a,| is convergent.
n=1 n=1

Proof of 2:
If lim |22 =L>1, welet e=L—1.
n—oo an

there exists N € ZT such that lomtal _ L‘ <¢e forall n>N

|an|

lan|

L—e< M <e+ L
|an|

|an+1]
lan|

1<
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Thus 0 < |a,| < |apy1]| forall n >N, neZ'.

o
Thus lim a, #0 and hence ) a, diverges.
n— 00 =il

3

Test a, = (—1)" ™ for absolute convergence.
37L

(nt1)3 ( )3 .
. . ant1| |37 L | (n+1 3
Using the Ratio Test, o | == | —3
B 3
_1(ntl
=3 ()
1\3
1
(147
1\3
Now lim §(1+.) =}<1
s 7'l3 c
> (=1)" — is absolutely convergent.
n=1 3n
Using the Ratio Test we can prove the useful result: lim — =0 for any keR
n—oo N.
n n+1 |
Proof: If a, = E” then lim |%2tl|= LN
n! n—oo | an n—oo [(n+1)! k"
. k
= lim {for k any constant}
n—oo 1 +
=0
o0
ap is convergent {Ratio Test}
n=1
lim a, =0
n—oo
EXERCISE K.3
1 Show that:
R 1-n . 1 &l-n .
a ), —5— diverges b > —— > —5 diverges
n=1 " n=1"T n=1 "
X1 R n-1
€ > —— > —5— converges.
n=1"T n=1 "
2 Test these series for convergence or divergence:
1 1 1 1 > VR
—_ — — + — — — 4 ... b —1)nt
In2 ln3+ln4 ln5+ nZ::l( ) n-+4
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3 Test these series for convergence or divergence:

o0 n oo . o0 1)n 1
g o 5 (-1sin (2) ynt
: n:l( ) n! n:l( )" sin n ¢ ;2 Yn
oo sin <n—27r) 0o (—1)m 0o n2
d _\N“7) =) f -1 n+1
7;1 n! ¢ ngo 27n! n:l( ) n3 41

4  Approximate the sum of each series to the indicated level of accuracy:

( 1)n+1 )n 1 .
Z to error < 0.01 b Z o to 4 decimal places
) (71)" . =
(Y S 04 decimal places. )
— n:
=0 ) _ % (—qyn-1 GRAPHICS
5 Use technology to find the first 10 partial sums of the series — CALCULATOR
n=1 n INSTRUCTIONS

Estimate the error in using the 10th partial sum to approximate the total sum.

oo
6 Consider the alternating series . (—1)""1b,, where In this question we prove
n=1 . 9
0<bpss <bp forall ne Z*+ and lim b, = 0. the Alternating Series Test.
n— o0
a Explain Why 52 =b; — by > 0. \
b Show that S; > S;. Hence prove that in general,
SQn > SQn_Q and O < SQ < S4 <.... < Sgn <.
¢ Show that Sy, =b; — (bg — bg) — (b4 — b5) e — (bgn_g — bgn) — boy, v
and S5, <D

d Hence prove that Sy, is convergent. Let lim Ss, = S.
n—oo

e Show that Sgn+1 =955, + b2n+1.
f Show thatif lim b, =0 then lim Ss,,;1 =S andhence Ilim S, =S.

n— oo n— oo n— oo

7 Determine whether these series are absolutely convergent, conditionally convergent, or divergent:

o0 o0 o0
(=3)" 2n arctann
.y B b ¥ (-2 ¢ 3 (-
n=1 n: n=1 ns+1 n=1 n
o0 _ n X _q\yn—1 X 1\n
d (1 3n> e Z (-1) Inn f Z (-1)
=1 \3+4n oy n n—o nlnn

(T V)

18
\

‘3
Il
o

o0 n
8 a Show that m—' converges for all z € R.

b Deduce that lim m—? =0 forall zeR.

n—oo N

9 Test these series for convergence or divergence:

n
0 1on o 1 o 9 oo cos(g)
> =t b Y ——— D d > 5~
n=0 T n=1 \/n(n‘l']-) n=1 8n —5 n=1 T +4n
oo 3 )
1 !
e n4+ f Z n
n—g nt—1 a0 2X5X8X ... x (3n+2)
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. X1 X1 . .
10 Testthe series », — and ). — for absolute convergence using the Ratio Test.
n=1 n? n=1"T
Hence explain why the Ratio Test is inconclusive when  lim Intll 1,
n—oo an,

POWER SERIES

[e.°]
A power series is a series of the form Y ¢, 2™ = ¢ + c12 + coz? + ...
n=0

o0
or more generally > cp(z —a)" =co+ci(z—a) +c2(z —a) + ...
n=0

The convergence of a power series will often, but not always, depend on the value of z.
oo

For example, consider the power series Y. c,z™ where ¢, = 1 for all n. This is in fact the
n=0

geometric series 1+ z + 2% + 23 + 2%+ ..., which converges for all |z| < 1.

We use the Ratio Test to determine the convergence of a power series.

Example 36

. X (z—3)"
For what values of x is > ~——— convergent?

n=1 w
—3)n 73n+1
If an:u then a"“‘: (2 —3) x —
n an n+1 (z —3)"
. (m—S)n‘
o n+1
_|==3)
1+
lim |2ntl) = |z — 3]
n— 00 an

o0
By the Ratio Test, Y a, isdivergentif |z —3|>1, butis absolutely convergent and hence
n=—1

convergent if |z —3| <1
-l<z-3<1
2<z<4

For |z —3| =1, the Ratio Test is inconclusive, so we consider the =2 and = =4 cases
separately:

o0
For x =2, a, =
n=1

,1)’”‘

n

|
8

, which is conditionally convergent. {Example 32}

3
Il
i

, which is the harmonic series, which is divergent.

(e.0)
For =4, > a,=
n=1 {Example 29, p-series with p =1}

gL
S|

3
I
i

o0
So, > a, converges for 2<xz <4

n=1
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o0
If a power series Y a,z™ is absolutely convergent when x =b, b# 0, then it is convergent
n=0

whenever 0 < |z| < |b)].

Proof:  Suppose 0 < |z| <[b]. Then |[a,z"|=

an bz ‘

bn
n
— |anb”| x (%) ’

<lanb™| since |z| < |b|

o0 o0
But )" |a,b™| is convergent, so Y |a,z™| is also convergent. {Comparison Test}
n=0 n=0

o0
> a,x™ is absolutely convergent, and hence convergent.
n=0

o0
For a power series Y ¢,(z —a)™, there exist only three possibilities for convergence:
n=0

e the series converges only when = = a
e the series converges for all = € R

e there exists R € RT such that the series converges if |z —a| < R and diverges if

|z —al > R.
o0
The power series Y ¢,(z —a)™ has radius of convergence R if R is the greatest number such
n=0

that the series converges for all # € R such that |z —a| < R and diverges for all = € R such
that |z —a| > R.

If the series converges only when z =a, we say R =0.

If the series converges for all x € R, we say R is infinite.
The interval of convergence [ is the set of all points = for which the power series converges.

Most of the interval of convergence may be deduced from the radius of convergence. However, we need
to consider convergence for the cases |z —a| = R separately.

)’IL

oo
. . -3
For instance, we saw in Example 36, that E=3)"
n

n=1
R=1.

converges for 2 < x < 4. In this case



86  CALCULUS

Find the radius and interval of convergence for —_—
& n;o vn—+1
—3)an ana1| _ |(=B"Hlen ! aTT
If a,= E it= ’ = X
Vit 1 Vnt2 (—3)nzn
= 3|z|
= 3|z|
lim |2ntl| = 3|gf
n— oo an

(o]
By the Ratio Test, > a, converges if |z| < % and diverges if |z| > 3.

the radius of convergence is R = =

To determine the interval of convergence, we must consider what happens when z = i%.

. ~ o (=3)" (—%) .
fo=-1 Sa=3 — 2/ -
n=0 n=0 vVn + 1 v+ 1
o)

oo
g 1 o<1 g c g
Letting r=n+1, > a,= ) —= Wwhich is a divergent p-series.
r=1T"

i

I
(]

X n=0 n=0 vn+1
_ 5 Lon which converges by the Alternating Series Test
o VTl Y '
. . 11
So, the interval of convergence of Zo o, s ==
=

Example 38

o0 n
° o . T
a Find the radius of convergence and interval of convergence for > —-, where z € R.
—_n N

b Hence show that lim x—T =0 forall xe€R.

n—oo N.
™ . a zntl n!
a If a,=— then lim |=2tL — X —
n! n— 00 an n—oo |(n+1)! e
= lim i

n—oo n+1
=0 for any constant x € R
by the Ratio Test the series has an infinite radius of convergence, and its interval of
convergence is R.
. S . "
b Since ) —7 converges forall z €R, lim — =0 forall zeR.

n—oo N.
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DIFFERENTIATION AND INTEGRATION OF POWER SERIES

A power series can be differentiated or integrated term by term over an interval contained entirely
within its interval of convergence. In the case of differentiation, an open interval is required

o0
If f(x ch " then f/(z chn =1 and /f Yde = 3 — gt
n=1 n=0 "t 1
Example 39
01 / oo
. (—3)"z"
Find — | d=.
/0 (nz—:o \ "+1> ’
From Example 37, the series i (3t has interval of convergence | —
' n=0 vVn+1 £

sz ]

since [0, 0.1] lies entirely within the interval of convergence

0.1 0o (—3)"18" 0o 0.1 (_3)nmn
/o (Eo NoEs ) dv=2. (/0 Tl d”““)
1S5 3)n xn-‘rl 0.1
2:: 1 n+1 a
0 n n+1
=3 (=3)"(0. 1)
n=0 (n + 1)

EXERCISE K.4

In each case find the

1 Use the geometric series to write a formula for each of the following
corresponding radius of convergence and interval of convergence
o0 oo oo
a Y a™ b > (2-a) ¢ Y (~1)nain
n=0 n=0 n=0
|
2 Find the interval of convergence of ) 5

n=0

a ) nb"a" b Z il
n=1

o0 (_1)n$2n—1

Find the radius and interval of convergence for each of the following series

e > (e
=0 n+l) =1 (@n—-1) o nlnn
X 2x4%X6X....x (2n)z"
Find the radius and interval of convergence of ) .
A=l 1x3x5x.. ><(2n—1)

A function f is defined by f(x) =1 + 2z + 22 + 223 + 2 +
Con—1 =2 and co, =1 forall ncZt.

a Find the interval of convergence for the series

b Write an explicit formula for f(z).

ceey

so f is a power series with
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oo
6 Suppose that the radius of convergence of a power series > ¢,2" is R.
n=0

o0
Find the radius of convergence of the power series Y c,z".
n=0

oo o0
7 Suppose the series Y ¢,z has radius of convergence 2 and the series > d,2" has radius
n=0 n=0

of convergence 3.

(&)
What can you say about the radius of convergence of the series > (¢, + dy)z™?
n=0
. 2" . . X na"T
8 Show that the power series ), ——— and the series of derivatives have the same
n=1 n?3n n=1 n?3n

radius of convergence, but not the same interval of convergence.

dx n=1 n! n=0

© _n T /oo un
9 Find L <Z m—) and / (Z t—'> dt. For what values of = do these series converge?
o !
10 Find:

0.1 [e'e) m"fl —1.5 o0 (_1)n %
a / < > dx b / <Z . ) dz < / < w2"> dz
0 =1 (n—1! —2 n=0 " 0 n=0

2 o0
11 Is / <Z :1:2"> dx defined? Explain your answer.
0

n=0

118
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"5 TAYLOR AND MACLAURIN SERIES

[ee]

Let Y cn(z —a)™ be a power series with radius of convergence R > 0, and interval of
n=0

convergence /.

oo
For each z with |2 —a| < R, the series ) ¢,(z —a)™ converges to a finite value. The series may
n=0
(o)
therefore define a function f(x Z (x —a)™ with domain I.

Functions defined in this way may look awkward. However, as we have seen, convergent power series
can be added, differentiated, and integrated just like ordinary polynomials. They are very useful because
we can express many different functions as power series expansions.

TAYLOR SERIES EXPANSIONS

oo
Suppose  f(z) = > cp(z—a)”
n=0
=co+ei(r—a)+ea(zr—a)+.... where |z—al <R

Since we can differentiate the power series on an open interval contained in 7,
f'(z) = c1 + 2ca(x — a) + 3cz(x — a)® + ...
f"(z) = 2ca + 6c3(z — a) + ....
™) =nlep + (n+ 1D ensr (@ —a) + ...

Using the above formulae, we find that: fla) =co

™ (a) : nle,

(n)
Hence ¢, = f—fa) where 0! =1 and fO(z) = f(x).

n:

We can use this information to reconstruct the function f in terms of the values of its derivatives evaluated
at r = a:

For such a function f, the Taylor series expansion of f(x) about = = a is

(a 1 (q, 1 q (k) (g
@)= 1@+ L2 - )+ L@ o+ L@ —app... = $ L0 gy

When a = 0, this is also called the Maclaurin series expansion of f(x). This is

@) = £0) + 20+ S 7/0) + S 170 + .. = 3 L0
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We have shown for a function f(x) with domain 7, that if:

1 f has a convergent power series representation for = € I, and

2 the derivatives of f of all orders exist on I, or I with its endpoints removed if [ is closed,

then f has a Taylor series representation and this is the only power series representation of f.

However, we still need to consider the conditions under which the power series representation of f will
converge.

TAYLOR POLYNOMIALS

If f(%) () existsat © = a for k=0, 1, ..., n, then the nth degree Taylor polynomial approximation
to f(x) about = a is

To(@) = £(@) + £/ (@) — @) + .o+ 1@ (5 g

n!

n ok
When a =0, this is also called the nth degree Maclaurin polynomial > z—' f (k)(O).
k=0 ©

Consider the function f(z) = e”.

f™M(z) =e® exists forall n € Zt and z €R, and f™(0)=e"=1 forall necZt.
2 n

The nth degree Taylor approximation to e® about 0 is T, () =1+ % + % +oot m—'

Graphs of f(x) =e*, Ti(z)=1+z,

R
22
Th(z) =14z + 5 and Ty(z)
CL'Z 35‘3 JJ4 1,‘5
are shown alongside: R—
9 xT

23

Z‘2

'

Note that T, (z) = f(z) when z is close to 0. As n increases, T,(x) approximates f(x) = e”
closely for an increasingly large subset of I = R.

If we denote R, (z:a) to be the error involved in using 7T, (xz) to approximate f(x) about = =a
on I, then f(z)=T,(z)+ Ryp(x:a).

The graphs for the case of f(x) =e® expanded about = = 0 suggest that as n increases, R, (x :0)
decreases and T, (x) becomes closer to f(z).
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Consider a function f with domain I containing x = a (not at an endpoint of I). Suppose f(**1 (x)
exists on I, or I with its endpoints removed if [ is closed.

For z € I, Taylor’s formula with remainder is f(z) =T, (x) + R,(z : a)
¥ (@)@ — a)k

where Z —

f(”Jr1 (©)(x —a)™t?

and R,(z:a)= i Dl

where c is between x and a, so either ¢ €]a, z[ or ¢ €]z, a[, depending on the values of a and .

This formula for R, (x : a) is called the Lagrange form of the error term.
Proof of Taylor’s Formula:

Consider an interval [a, b] C I.

We define a new function
hz) = 1)~ f(@) ~ (@) 6~ 2) ~ LD o 22 -

where K is the constant found by solving h(a) = 0. Note that h(b) = 0.

£ (2)

n!

(b—z)" — K(b—x)"t!

Since f and its n + 1 derivatives exist on [a, b], h is continuous on [a, b] and differentiable on
la, b[. Since h(a) = h(b) =0 we can apply Rolle’s theorem to h on [a, b]. Thus there exists
c € ]a, b suchthat h/(c) = 0.

Using the product rule n times we obtain for x € I and z > a:
@) () (b=
L) + [ — LH=T) + W |

O @@=e? _ fD(@) (b= I ”)(u’v)(b/«?ﬁ”( _ @) —a)"
2! 3! _Ah— 1) ol

+(m+1)K@b—z)"
(@) (b — 2)"

n(z) = - +(n+1)K(b—x)"
Since K(c) =0, (n+1)K(b—c)" = %(b —on
G ©
T (nF1)!

We can repeat the argument with interval [b, ] C I, for z € I and z < a.

D — ot
(n+ 1)!

It follows that R, (z:a) = as required.

Before the invention of sophisticated calculators, calculations involving irrational numbers like e were
difficult. Approximations using Taylor polynomials and rational values of « were often used.
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Example 40

a Find the 3rd degree Taylor polynomial of sinz about 7.
b Hence estimate sin (%)

¢ Use the error term to show your approximation is accurate to at least 3 decimal places.

a f(z)=sinz f(%)zsin(%):%
HE)SCeE: f'(%) = cos(%) = 75
/(@) = —sina f(3) = —sin(5) =75
@)= =cze 7"(3) = —cos(3) = -5
3
L r— = fr(z W=
sttty FEEAT D
2 3
gm0

V2 T2 V2T 9l V2T 3l
~ 0.5878
4
sine (3 - %)
¢ |Rs(2:%)|=|——4| where Z<c<%

(-5)

< since |[sinc| <1

4!
< 0.0000254

|T5 (%) —sin(Z)| < 0.0000254

T5(%) ~sin(Z) is accurate to at least 3 decimal places

Use a Maclaurin polynomial to estimate €%-* with error less than 0.00001.
You may assume that e < 2.72.

f(@)=e* fO)=€" =1
flle)y=¢"  f(0)= eo =1
fP@) = fM0)=e"=1
T (x ZZ: wk— forall n€Z" and Rn(:c:()):%
ecmn+1

= D where c € [0, z].




CALCULUS 93

We require R, (0.4:0) < 0.00001
O 000001 where 0<c<0.4
(n+1)!
¥ < e < el
l<e® <l <el <272
ef(0.4)"tL  2.72(0.4)n 1

(n+1)! (n+1)!
n+1
we need n such that % < 0.00001 r\)
n :
O™ _ 5 e 108 / CALCULATOR
oy < 367610 INSTRUCTIONS

Using technology, n > 6
T5(0.4) ~ 1.491 824356 approximates e%* with an error less than 0.00001.

EXERCISE L.1

1 a Find the 3rd degree Maclaurin polynomial T3(xz) of sinz.

jus

b Hence estimate sin ( =

¢ Show that |T3(%) —sin(%)| < 0.0065.
Hence show the approximation is accurate to 1 decimal place.

) correct to 4 decimal places.

3 5

z +g;—' on the interval

2 Find an upper bound for the error in using the approximation sinz ~ = — -

-03<2z<03.

3 Use the Maclaurin series for sinz to compute sin3° correct to 5 decimal places.

4 Find a Taylor polynomial approximation to cos (% + 0.2) with error < 0.001.

1
2
5 Using the power series expansion of 6_22, evaluate / e~ % dx to 3 decimal places.
0

1
2
6 Using the power series expansion of 6‘702, evaluate / e” dxr to 3 decimal places.
0

7 Estimate the value of e~! to 6 decimal places using the Alternating Series Estimation Theorem.

8 Use a Taylor polynomial to estimate each value with accuracy indicated.
a e® with error < 0.0001 (You may assume e < 2.72.)
b sin(3 +0.1) witherror < 0.0001
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CONVERGENCE OF THE TAYLOR SERIES

From Example 41, the error term for the Maclaurin polynomial approximation of f(z) = e* is

(n+1) n+1 c..n+1
R, (z:0)= ! () =27 , Wwhere c is between x and 0.
(n+1)! (n+1)!
noogh eCxntl .
By Taylor’s formula, e* = )" o + CFS] where ¢ is some value between x and 0.
— n !

Consider what happens as n — oo.

© _k
By the Ratio test, 9;—' converges for all x € R. (See Example 38.)
k=0 %

0 k

But before we can conclude that e* = gli—', we need to find  lim R, (z:0).
k=0 . n—oo
e |zt .
Now lim |R,(x:0)]= lim where e° is a constant dependent on .
n—00 n—oo (n+1)!
et
Forany z € R, lim =0 (See Example 38.)
n—oo (n+ 1)!
. P 1 e P Lt
i B (2 0)] = lim "o = ef im o =
lim R,(z:0)=0
n—oo
o0 mk
We therefore conclude that e* = ) o forall z € R.
k=0 **

TAYLOR’S THEOREM

If f(x) has derivatives of all orders on interval I which contains a, then

1 f(z)=T,(z)+ R,(z:a) forall x €I, and

X f(n) —a)"
2 fla)= Y L2@WEZO rgngonlyif  lim Ru(:a) =0 where
n=0 n. n— oo
Fm Q@ — ot
R, (z:a)= D) for some constant ¢ between x and a, where ¢ depends on x.
n 4
Proof: 1 Proved above as Taylor’s formula.

2 For a general function f and for any n € Z*,
flz) =T, (z)+ Rp(x:a) forall x el

)z —a)"

' exists if and only if this series converges.
n:

X f(n)
Now lim T,(z) = > ARG
n=0

n— oo

This occurs if and only if lim T, (z) = lim (f(z) — Ru(z : a))

n— oo n—00

= f(z) — lim R,(z:a) exists.

if and only if lim R, (z:a)=0.

n! n— oo
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Taylor’s Theorem tells us that the Taylor series of a function f does not necessarily converge, but when
it does converge, it equals f(z) if and only if lim R,(x:a)=0.
n—oo

ADDITION OF SERIES

o0 o0
Suppose > a,z™ has radius of convergence R, and > b,z™ has radius of convergence Ry.
n=0

n=0
(e, ¢] o0 o0
The sum of the two series is Y anz™ + > byz™ = > (an + b,)z™ which has radius of
n=0 n=0 n=0

convergence being the minimum of R, and Rj.

Example 42

a Show that f(x) = cosz is equal to its Maclaurin series expansion, and find the radius of

convergence.
b Hence find Maclaurin series expansions for the following, including their radii of convergence:
i cos(2x) ii sinz
a  f(z) =cosz f(0)=1
f/(z) = —sinz f(0)=0
f'(x) = —cosz f(0) = -1
f"(z) =sinx f0)=0
f®(x) = cosz f@0)=1

By Taylor’s Theorem,

f(z) =cosz

_ )+ Q1O SO s f(")(?)w” + Ru(z:0)

1! 2! 3! n!
. m2 m4 666 k $2k . +
_1_E+I_a+w+(_l) w+R2k+l(l"0)a keZ
F@k41) (g)72k+1

where Rogy1(z:0) = for ¢ a constant between 0 and x

(2k + 1)!

Since | f**)(¢)| = Jsin(c)| < 1,

. | pERAD) ()g 2kt
lim |Ry, (2 : 0)] =,};H;o’%

2k+1
| 2**

< lim @D 0 {see Example 38}

by the Squeeze Theorem, lim |R,(x:0)|=0 forall z€R,
n—oo

lim R,(z:0)=0 forall z€R
n—oo

o0 _1\n..2n
f(x) =cosx = (D" for all = € R. The radius of convergence is infinite.
(2n)!
n):

n=0
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b

SR . (=1)"x2m
i Since cosz = nX::O e
n 2n
cos(2x) Z EVPEDT gfrall zeR.
n=0 (2 )'

The radius of convergence is infinite.

ii Now since the Maclaurin series expansion of cosx is defined on R, it is both
differentiable and integrable on its interval of convergence R.
2 gt

Since cosx—l———i——'—a—k . forall z e R
d . a7 473 625
— (cosz) = —sineg = -+ — — —
e 2! 4! 6!
3
sinz=z— > +% _ . forall z€R.
3! 5!

€z
Alternatively, sinz — sin(0) = / costdt
0

. _ ( 1)nt2n
smx—/o <n§_:0 ) > dt
SN G

- </ 2n) dt)

oo n2n+17%
(=1)"¢
- [Z (2n +1)!
n=0 . 0
oo n.2n+1
= Z_:O ((;Lil)' forall z € R
x3 x? w7
7§+§77+““ forall z € R

The radius of convergence is infinite.

EXERCISE L.2

1 a
b
2 a
b

Show that f(z) = sinx is equal to its Maclaurin series expansion, and find the radius of
convergence.

Hence find the Maclaurin series expansions for the following, including their radii of
convergence:

i xsinz il sin(3z) ili cosx
Show that f(x) = e~ is equal to its Maclaurin series expansion, and find the radius of
convergence.
2
—T

Hence find the Maclaurin series expansion for e~* , including its radius of convergence.

3 Find the Taylor series expansion about =z = 2 for f(z) = Inz and its associated radius of
convergence.

L a

b

Find the Maclaurin series expansion for f(z) = 2” and its associated interval of convergence.

o0
Hence find a,, such that > a, =T.
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Let f(z)=In(1+ z).
a i Find the Maclaurin series for f(z) and its associated interval of convergence I.

ii Show that f(xz) =In(1+z) equals its Maclaurin series for 0 < < 1 by showing
lim R,(z:0)=0 for 0 <z <1
n—o0

b Complete the proof that In(1 + x) equals its Maclaurin series for —1 < x < 1 in the
following steps:

. : : . : . 1
i Use the geometric series to write down the power series representation for T |z| < 1.
X

ii Use the fact that In(1+2)—In(1+40) = / ILH dt to find the Maclaurin series for
0
In(1+z), |z| <1.

(e o] 1)k
¢ Hence find the exact value of Z
a i f(z)=In(1+x) oo f(0)=Inl1=0
/ 1 ’ .
7(@) = 70 =1
" o =1l " _
£'@) = e 7'(0) = -1
" _ —1x =2 " —_ (_1\29]
£"(@) = T £(0) = (~1)*2!
(n) _ (_1)n_1(n_ 1)! (n) — (_1\» 1 _ 1)!
s = SR ) = (1 — 1)
f(z) =T,(z) + Ru(x : 0)
Ixz 1x z2 2123 3zt (=) L(n —1)lz" i
_ x2 :E3 w4 (_1)nflwn )
=z——+—-—+..+ + Rp(z : 0)
. . f("""l)(c)ac"""l B (=1)" Zntl
where R, (z:0) = D - Ao imr D)
0 1yk+1 .k 2 3 4
Thus the Maclaurin series for In(1+x) is > e = .
= k 2 3 4
By the Ratio test this converges for |z| < 1.
We ignore the case 2 = —1, since f(x) is undefined at this point.
00 1\k+1
If =1, wehave (=1) which converges by the Alternating Series Test.

k=1
Hence the Maclaurin series for In(1 4+ 2) has interval of convergence |—1, 1].
znt1
(1+c)ntl(n+1)
If 0<c<z<1 then

ii |[R.(z:0)= where c is between 0 and z.

n+1 1
<|Rn(z:0)| < i — < —— for 0<z<1
n+1 n—+1

hm |R,(z:0)] = lim

n—oo n + 1

=0 {Squeeze Theorem}
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1 e k
b i =Y 2% for |z|]<1
Il =aw =0
- k
1+z kz_:o(_x
o0
-5 (-
k=0
=1-xz+2®—23+a*— ... for |-z| <1, whichis for |z| <1
!
ii — = —dt
il In(1+2)—In(1+0) 1o
o0
In(l1+2) = Z( DEtkdt for |z| <1
0 k=
o0
=3 / etk dt
k=0 Jo
0 k k41
Z(( L ) for |z| <1
k=0 \ k+1
2
zx—% %—%4—.... for |z| < 1.
. X (—1)k . . .
¢ We have seen previously that > is convergent by the Alternating Series Test.
k=1
1)k
> &- —1+——%+i—%+
1,1 _ 11
—(l-3+3-%+3—-)
=—In(1+1) since 1e€I=]-1,1]
=—In2

Example 44

a Use the Maclaurin series expansion for e” to write down power series expansions for:
i e i e® , ne€Zt.
Use the Maclaurin series expansion for cosz to find the first two non-zero terms of the
Maclaurin series expansion of cos(e®).
*) & cos(1) — sin(1)z.

Find, by direct calculation, the Maclaurin polynomial of degree 2 of cos(e®).

ili e™®

b

Hence show that for = near 0, cos(e

zF z2 x3

T =

e

& 1il8

k

(231:)]c 422 8a8

ZO

(42)*

1622

6423

i el* = Z

k=0

X (nxz)k n2z?

ent — Z
k=0

- =ltdrt ——+ .

n3z3

= Il 4 e 4F —T

+ P ooao

k!
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@ e e e
o oeosle) =l
2
=1-—-(1+2 +4i,+.. )+%(1+4 + 202
(_1)n n2m2
+ (2n)!( +nz+ —— + )+

w1 (£ G5) + (£ )

n=1 =)
o 3 o 5
¢ For z close to 0, higher order terms involving 2, 23, .... tend to 0.
cos(e”) ~ 1+ Z ((2711))7 Zl ((2;111113;!
Now cos(1) —1= 7% + % = % +o = nizo:l ((;i))T
and —sin(l) = 1+ — =+ :1 (2(;):),

cos () &~ 1+ (cos(1l) — 1) — sin(1)x
= cos(1) — sin(1)z

d Let f(x)=cos(e”). o f(0) = cos(e”) = cos(1)
f/(x) = —sin(e®) x e* o f'(0) = —sin(1) x 1 = —sin(1)
f"(z) = —e®sin(e®) — cos(e®)e** o f"(0) = —sin(1) — cos(1)

T5(x) = cos(1) — sin(1)x — (sin(1) + cos(l))g

5 a Use the geometric series to find the Maclaurin series for each given function and find the
associated radius of convergence.

i flz)= ! i f(z)= ! i f(x):;

1+ z2 1+ 23 1— a3

1

. E !
b Hence estimate / T
0

—+x

7 dz  to 4 decimal places.

. . . 1 . .
6 Obtain the power series representation of In (1+—$> and use its first 3 terms to estimate the value

of In2. -

7 a Use the Maclaurin series expansion for e” to write down the power series expansions for:

i e ® ii e3¢ ili e~ @k—Dz ezt

b Use the Maclaurin series expansion for sinz to find the first two non-zero terms of the
Maclaurin series expansion for sin(e™7).

¢ Hence find an approximation for sin(e™®) for x near 0.

d Find, by direct calculation, the Maclaurin polynomial of degree 2 of sin(e™%).
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8 Let f(z)=(1+=x)?, where peR.

. . . X plp—1)(p—n+1)
a Show that the Maclaurin series for (1 +z)? is > ' x".

b Find the associated radius of convergence.

¢ For 0<z <1, usethe remainder term to show that (1 + x)P equals its Maclaurin series.

THE BINOMIAL SERIES

In the last Exercise we considered the binomial series for 0 < x < 1. In fact, the general result is:

< pp—1)..(p—n+1
(1+z)P =3 plp—1) fp nt D) on foral |z| < 1.
n=0 n.

The remainder of the proof is done in Exercise P question 5.

P

For p=0 or p € Z™, the coefficient of 2" is zero for n > p. In these cases (1+z)? = > (p) ",
n=0

which is the binomial formula. This series is finite and therefore convergent for all = € R.

For other values of p, the series has radius of convergence R = 1.

a Use the Maclaurin series expansion of (1 + x)? to write down the Maclaurin series for
1

(1—a2)" 2.

b Use the fact that arccosz — arccos(0) = /
0

=il
1—1¢2

dt to find a Maclaurin series for

arccosz. For which values of x is this valid?

¢ i Use the series in b to find the first three non-zero terms of arccos(z?).

0.4
il Hence find an approximate value for / arccos(z?) dz.
0

o0
a (1+x)pzzp(pil)""(pikJrl)xk for all |z| <1

=0 k!
] o (—1) (—ﬁ) (l—k)
A=) 2 =14 3 = ()
= k!
1 3 —2k+1 %
oo (—5) (—§> ( : )(_1)
i 2k
+kz::1 o az
o0 2k
(—1)*" x1Xx3X5xX...x(2k—1) o
=1
+,§1 2k k! *
—14 i 1X3X5X""X(2k_1)x2k
= 2k (k")
o0
14 z 1x3%x5x...x(2k—1) % 2X4X6X...x2k % 2k
= 2kk! 2%x4X6X....x2k

o0
(2K)! o
=1 ——
+ k; 2 k1 2K K
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(-2 =1+ 3 4,22’;?)2 22 forall [22| <1, whichis forall |z < 1.

—1
b arccosz — arccos(0) = / —dt
Vi-e
arccosT — 5 = / ( 4122(];?)2 2’“) dt

_ @R ok
4k(k') (2k+1)

(2K)! L2k
=1 4R(RD2(2k + 1)

This is valid provided |z| < 1. These values of z all lie in the domain of arccos, so the
series is valid for —1 <z < 1.

arccosT = § — T —

c i arccosz = £ —x — %xg {using the first 3 terms}
arccos(z®) ~ F —a® — 22% for |z] <1

Q

0.4 ms
/ (% — - —) dzr since [0.4]| <1
@ 6

0.4
- z3 z7
12T T
0

0.4
ii / arccos (m2) d
0

EXERCISE L.3

1 Use the Maclaurin series expansion of (14 x)P to find the Maclaurin series for each given function
and find the associated radius of convergence.

a flz)=— b f(z) =

1— 22

1
14 a3

1
1—23

¢ flz)=

2 a Use the Maclaurin series expansion of (1 + z)? to write down the Maclaurin series for
(14 22)~! and state the associated radius of convergence.

xr
to obtain the Maclaurin series for

b Use the fact that arctanz — arctan(0) = e

0
arctanz. For which values of z is this valid?

¢ i Use the series in b to find the first four non-zero terms of arctan(z?).
1
ii Hence find an approximate value for / arctan(z?) dz.
0

1
3 a Usethe (1+ )P series to write a Maclaurin series for (1 —z?) 2 and state the radius of

convergence R.
x
. . 1 . . .
b Use the fact that arcsinaz — arcsin(0) = / ———dz to obtain a Maclaurin series
0 1— 22

expansion for arcsinz for |z| < R.

1 o0
c If :——I—Zak, find ay.
2 k=

™
6
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PRODUCT OF SERIES

o o0
Suppose > a,z™ has radius of convergence R, and > b,2" has radius of convergence Ry.
n=0 n=0

The product of the series is

(o) o (o)
(Z an:c"> (Z bn:c") = > cpa”
n=0 n=0 n=0

aogbg + (a0b1 F albo)fli aF (aobg + a1b1 + a2b0)x2 + ot + ...

where ¢, = agb, + a1b,—1 + .... + anbo.

The radius of convergence is the minimum of R, and Rj.

Example 46

oo
Let Y apz™ =
n=0

o o T
- be the power series expansion of ——, x # km, k € Z.
sinxT sin o

Use the Maclaurin series expansion of sinz to find ag, a1, as so that ~ ag+a1z+asr?

sinz
for x near 0.
. a% ) 2 x3 b
Since —— = )" apz”, wefind z=(ag+ax+azr+...)|(z—=+—=——..
sinz =) 3! 5!
= agx + a1x2 T <a2 = (;—?> z° + ...
Comparing LHS and RHS and equating coefficients, ap =1, a3 =0, as = %
2 1+ ta?
ST

EXERCISE L.4
1
1 a Find the first four terms of the power series representation for 1+ = (1 + )2, where

o0
|z| < 1, by letting v1+z= ) a,z" andusing (y1+z)>=1+ux.
n=0

b Check that your answer in a agrees with the (1+ )7 series with p = 1.

2 a Use known Maclaurin series expansions to find For the Maclaurin series
the first four non-zero terms in the Maclaurin expansion of arccos z,
series expansion of e® arccosz. see Example 45.

b For which values of = does the expansion in a
equal the full Maclaurin series expansion?

3 a Use known Maclaurin series expansions to find the first three non-zero terms in the Maclaurin

series expansion of
Ccos T

b For which values of « does the expansion in a equal the full Maclaurin series expansion?
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4 Use the Maclaurin series expansions of sinz and cosx to determine the first three non-zero terms

of the Maclaurin series expansion for tanx =

sinx

Cos T

5 It can be shown that the exponential function equals its Maclaurin series for all z € C, where C is
the set of all complex numbers.

00 Lk
ef=3 2—' for all complex numbers z.
k=0 "

Let z =10 where 6 € R.

a
b

Use the above result to write down the simplified expanded series for €.

Hence, using the known Maclaurin series for cosf and sinf, 6 € R, prove Euler’s formula

e = cosf + isin 6.

6 a Provethat 1+ z<e* forall x >0.
b Hence show that if wu; > 0 for all &k, then
ITA+wur) =1 +u)(1+ug) ... (14 uy,) < evartuzttun,
k=1
0o n
¢ If > wu, converges, deduce the behaviour of H Up = Uy X Uy X .ooo X Up
. n=1 b1
[T +ug) as n— occ.
k=1 /
. . . X1 w2 4
7 In this question, use the following steps for Euler’s proof of > — =5
n=1"T
. $3 $5 CL'7
You may assume that sinz = x — T + ST +.... forall zeR.
a Find all the zeros of sinx and of sin @ for x € R.

b

. . . sinz .
Find the power series expansion for —— and its interval of convergence.
x

Find all the zeros of (1 _ f) (1 + f) (1 _ i) (1 n i)
s T 27 27
Show that:

-2+ (-2)(1+2) = (1—:—2) (1—%) (1—%)

and comment on Euler’s claim that

CC2 1'4 CC6 582 32'2 582

By equating the coefficients of 22 in this last equation, prove that:

X1 1,1 1 1 72
> ScEtptEtpt=5
n=1
A i‘é L absolutel : io: 1 i": 1 i": 1
s — is absolutely convergent, we can write — = +
n=1 n? n=1 n? r=1 (2’!‘)2 r=1 (2r — 1)2
N———
even n odd n
= 1 = 1
Use this last equation to find the exact values of > s and Y ———.
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HISTORICAL NOTE

Euler was able to derive a method to sum all series of the

form n;lm, keZr.

o0
1
- 4
However, the exact value of nE—l T forany k € Z

is still an open problem.
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U0 DIFFERENTIAL EQUATIONS

A differential equation is an equation involving the derivative(s) of an unknown function.

Suppose y is a function of x, so y = y(z). Examples of differential equations for this function are:

dzy _

dy x2 dy
dx?

== = —0.075y3

dy
YYo=
dx Y dx dx +dy =0

Such equations not only arise in pure mathematics, but are also used to model and solve problems in
applied mathematics, physics, engineering, and the other sciences. For example:

A falling object A parachutist Object on a spring

Iy

M

b fm

a2y v P’y _
@_9.8 m—- =mg —av mﬁ——ky
Current in an RL Circuit Water from a tank Dog pursuing cat
—— " VWW—— y

curve of pursuit

]
L H
T

dl dH 2 2
& = == d d
L—+RI=E = avH &Y _ H_(z;)

FIRST ORDER DIFFERENTIAL EQUATIONS

In this course we will only deal with differential equations of the form
d
o, y) 22+ gz, y) =0 where y=y(a).

These are known as first order differential equations since there is only one derivative in the equation,
and it is a first derivative.

SOLUTIONS OF DIFFERENTIAL EQUATIONS

A function y(z) is said to be a solution of a differential equation if it satisfies the differential equation
for all values of = in the domain of y.

. . . ..o d
For example, a very simple differential equation is d—y =z
X

In this case we can use direct integration to find y = / rdr = %m2 +ec.
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In solving the differential equation we obtain a constant of integration. We say that y = %xz +c is
a general solution to the differential equation. It describes a family of curves which all satisfy the
differential equation.

If we are given initial conditions for the problem, such as a value of y or Z—y for a specific value of z,
X

then we can evaluate c. This gives us a particular solution to the problem, which is one particular curve
from the family of curves described by the general solution.

Example 47

Consider the differential equation Z—y — 3y = 3.
X

Show that y = ce® — 1 is a solution to the differential equation for any constant c.
Sketch the solution curves for ¢ = +1, £2, +3.
Find the particular solution which passes through (0, 2).

QO an O o

Find the equation of the tangent to the particular solution at (0, 2).

a If y=ce3® —1 then W _ 3ee3e.
dx

b 3y = 3ce3® — 3(ce3® — 1)
dx
= 3ce®® — 3ce3® + 3
=

the differential equation is satisfied for all x € R.

b The solution curves for ¢ = %1, +2, 3 1
are shown alongside:
1
¢ y=ce®® —1 is a general solution to the differential equation.
The particular solution passes through (0, 2), so 2= ce®*" — 1
c=3
the particular solution is y = 3e3*~!
dy
d —==3+3
dz 3y Y
at the point (0, 2), &y =3+3%x2=9
T
the gradient of the tangent to the particular 303 12
. . =3e” —
solution y = 3e3*~1 at (0, 2), is 9. ) 2 Y —1 1
the equation of the tangent is B ‘ ‘ oz
y—2 _ N
z—0 J =2

y =9z + 2 y=9x + 2
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SLOPE FIELDS

Given any first order differential equation of the form f(z, y) % +g(z,y) =0 where y=y(z),

we can write ¥ = _9@y) _ h(z, y).

da flz,y)

We may therefore deduce the gradient of the solution curves to the differential equation at any point
(z, y) in the plane where h(z, y) is defined, and hence the equations of the tangents to the solution
curves.

The set of tangents at all points (x, y) is called the slope field of the differential equation.

. x
For example, the table alongside shows the values of S T-11 o 1 5
dy . . .
—~ =x(y—1) for the integer grid points z, y € [—2, 2|.
- = oly—1) ger grid p ye[-272 26| 3]0 -3]-6
—1 2 0| -2|—-4
yl 0 2 1 0| —-1]-2
1 0 0|0 0 0
2 | =2|-1|0 1 2
By representing the gradients at many different grid points as IR IR X A A A A RO
line segments, we obtain a slope field of the tangents to the ol iz\i L
1 | U W S U WA /2N |
solution curves as shown. NN I A
T W U U N N N A A A A A
A T T N N N -7 /)

L =D s oSNV 20 41T
[ A 4 U W U U R R R A
[ A A4 A N W T T T A R B |
Pl 24N 0t
[ e Y A A U W A O |
[ A A A UV U o A O |
[ e Y A A U B T O |
[ T Y B B A § A W T O A B
LI Y R B B Y S T A B
Now the tangent to a curve approximates that curve at and near I P
. . . . | [
the points of tangency. Therefore, by following the direction P RN
3 3 3 3 [ [
given by the slope ﬁeld' at a given point, we can approximate L o
solution curves of the differential equation. Vo N
AN /7 /1
/ 7 /77 NN N T \

The horizontal line in the figure is the solution curve
corresponding to the initial condition that y =1 when z = 0.

B NN VAN
“-—
+—— : : :
—— s/
—————— = =~

Although it is quite straightforward to obtain a few slope field points by hand, a larger or :ILE?_:Z

more refined field is best obtained using technology. You can click on the icon on your >
CD or else download software for your graphics calculator. 1 )
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An isocline is the set of all points on a slope field at which the tangents to the solution curves have

the same gradient.

For a first order differential equation written in the form

dy _ h(z, y), anisocline is a curve given by h(z, y) = k,
X

Isoclines are not solutions
to the differential equation.

d In general, they are not

where k is a particular constant. straight lines.

There may also be an isocline corresponding to points
where the gradients of the tangents to the solution curve
are undefined.

d 1— a2 —y? A
For example, suppose W__"r°Y RN L
dx y7m+2 AN VN N U N N NN \
\\\\\\\\2__\
dy NN N N N NN NN N
e — is discontinuous when y—x+2 =0, which is VANN NN S S S s
dx VNN N SN ~———1 -
. . . . . NN N N
when y = x — 2. This isocline is the red line on NN
NN N S

the slope field.

AW
AN
AN
AN
NN
NN
AN
~ A\
~ \

— e e

A

/17

[
/

\ I\

VL

A\

\ A/

dy NE) U I SR SR & I
e —~iszero when 1—2?—y?=0, NN A
d./L' A N N N N I
. . 2 2 AN N N N N N NS [ Y
which is when =z +vy =1. (R UR NN A
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Example 48
. . . . dy
Consider the differential equation 2 = Y where z, y > 0.
X
m2
a Verify that y =ce? 1is a general solution for any constant ¢ € R, ¢ > 0.

Construct the slope field using integer grid points for z, y € [0, 4].

¢ Sketch the particular solution curve through P(2, 1).
22
d Verify algebraically that the curve you have sketched is y = iQ ez,
€
e Draw the isoclines corresponding to k& = 1, 3, and 6.
a If y=ce? then L =2xZxce?
dx 2
22
= zce?
z2
=z ceT>

22

e? >0 forall z

IZ

since y >0, ¢c=0, y=ce? isasolutionforall c€R, c>0.
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b, ¢ a8
0O(1 (2] 3|4
O[O0 O0O]0]0]O
11012 3]4
y| 2101|214 |6]8
3103|6912
4 [ 0| 4| 81216

22

d The general solution is y = ce? .
The particular solution passes through (2, 1)

22

1=ce?
1=ce?
1
‘T
22
Hence P(2, 1) lies on the particular solution curve y = e% e’.

e The isoclines are shown in red.

EULER’S METHOD OF NUMERICAL INTEGRATION

Euler’s Method uses the same principle as slope fields to find a numerical approximation to the solution
of the differential equation Z—y = f(x, y).
X

Since the gradient d_y indicates the direction in which the solution curve goes at any point, we reconstruct
X
the graph of the solution as follows:

We start at a point (zg, yp) and move a small distance in the direction
of the slope field to find a new point (z1, y1). We then move a small

. : o . : : (z1,91)
distance in the direction of the slope field at this new point, and so on. ~ gradient = f(zo, yo)

If we step h units to the right each time, then

ry =x0+h and y1 =yo+h f(xo, yo). (20, 10)

More generally,
Tpt1 =T +h and ypi1 =yn + hf(xn’ yn)

Clearly, Euler’s Method only gives an approximate solution to an initial
value problem. However, by decreasing the step size i and hence Euler’s Method will be less
increasing the number of course corrections, we can usually improve accurate when the gradient
the accuracy of the approximation. f(z, y) is large.

\p
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Example 49

Suppose ;l—y =x+y where y(0)=1. Use Euler’s Method
Xz

with a step size of 0.2 to find an approximate value for y(1).

Now Zpi1=x,+h and  Ypi1 =Yn +h (@0, Un)

: d
given S(2,) = %

T

=x+y and step size h = 0.2,

(If we are given a differential
equation and an initial point,

we call it an initial value

problem or IVP.

Tnt1 = Tp + 0.2 and Ynt+1 = Yn + 02(1}” + yn)

Using the initial conditions,

yo =1

y1=14+020+1)=1.2

yo = 1.2+ 0.2(0.2 + 1.2) = 1.48

ys = 1.48 + 0.2(0.4 + 1.48) = 1.856

ys = 1.856 + 0.2(0.6 + 1.856) = 2.3472
ys = 2.3472 + 0.2(0.8 4 2.3472) = 2.9766

.’EQZO

1 =0+0.2=0.2
22 =02+02=04
23 =0440.2=0.6
74 =0.6+0.2=0.8
5 =08+02=1

So, y(1) = 2.98.

EXERCISE M

d
1 y

=2z —y.
X

Consider the differential equation

Show that

Sketch the solution curves for

y=2x —24ce™ "
c=0,+1, +2.
Find the particular solution which passes through (0, 1).

0 n O o

for any c € R.

Hence solve the IVP dy

i

b y(3) = 4.

E

Y

3 Slope fields for two differential equations are plotted below for z, y € |
to graph the solution curves satisfying y(1) = 1.

b

Show that y = v/a2 4+ ¢ is a general solution to the differential equation

is a solution to the differential equation for any constant c.

Find the equation of the tangent to the particular solution at (0, 1).

—2, 2]. Use the slope fields

a SN\ N\NVY s s —— e Ky - =
\\\\\\\2__//////// ///////2__////////
~ N N NN N\ VA A A -7 S S e — —
NN N N N N\ /! /S S s s ———— - s/ S S S e = = —
~ N NN N NN\ Y A A S a4 A
~~NSNSNNANNANWNTV/V /S e e e A S — — —
~~ >~~~ \\\ /S S S - e e - A S — — —
~ N~ NN NN\ A A A i P ava ///////FI,
<t : : b <t : : &
BNy NN N A —= s e
~~ >~~~ N\ ) R A A i - s s S S S s m = = =
NN N N T N T O - s s S S — —
~ N~ N NN NN\ R A A g - s/ S S S — — —
~ ~ N~ N N N\ A A P avavs S S — — —
~ N N NN N A\ VA A g - 7/ S S e - = —
~NSSNNN\4A T/ / /i e e~ -~ S S e — —
\\\\\\\\"//////// ///// R Rt
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. . . . d . .
Consider the differential equation d—y = 10ytanxz where = is measured in degrees. Draw the
X

slope field using integer grid points where z, y € [—2, 2].
ay _

.=
Sketch isoclines for k=0, 2, 4 on a grid for «, y € [-5, 5]. Hence construct a slope field,
and sketch the solution curve satisfying y(0) = 1.

Consider the differential equation 24y -1

The slope field for the differential equation A Y IR
d 1 2 4 2 . . rss VAV, / I ‘ [ ‘: ‘
L e i e is shown alongside. ;o Sl D
dx y—5z+ 10 s s ;7 S
. . . e P v B L T T
a Sketch the particular solution passing through =~~~ SR F Sl A IR I
the origin. S I B UENENENEN
3 ——=1-— 41— ==~/ \ N
b Sketch the isocline corresponding to: S S RN SR S
. d . . d S s = — -+ — = RN
i & being undefined i Y=o c - s b WENNIENE
dzx dx o - i A
e P aa AR R U
e s S /o |
r s s s 2T | \
s /o |
AN R |

Use Euler’s Method with step size 0.2 to estimate y(1) for the initial value problem
dy

= =142z-3y, y(0)=1
dx

Use Euler’s Method with step size 0.1 to estimate y(0.5) for the initial value problem
dy

— =sin(z +y), y(0)=0.5. Assume z and y are in radians.
i
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"1/l SEPARABLE DIFFERENTIAL EQUATIONS

dy _ f(z)

Differential equations which can be written in the form e @) where y = y(x), are known as
€ gy
separable differential equations.
Notice that if 2¥ = f@) then g¢(y) dy _ f(z).
dz g(y) dx

If we integrate both sides of this equation with respect to x we obtain

[o o= [ se)as
by the Chain Rule, /g(y) dy = /f(a:) dx.

The problem of solving the differential equation is hence reduced to the problem of finding two separate
integrals.

Example 50

Solve the initial value problem 2x % —-1=9% y()=1
XL

291:d—y—1:y2
T

d
d
2z = y:+1
dx
L ody_ 1
y2+1 dx Y
. : : : 1 dy 1
Integrating both sides with respect to x gives —— —dr = | —dz
y2 +1 dx 2z

1 1
/FH@_/EM
. arctany = s Inlz|+c
y = tan (% In|z| 4+ c)

But y(1)=1, so l=tan(3Inl+c)

1 =tanc

_=x
C=7

the particular solution of the differential equation is y = tan (4 In|z| + ).

2 1 1

a Show that = — .
z2—1 rz—1 r+1

2
b Find the general solution of the differential equation % =z 2y +1y .
T e —

1 1 ztl—(z—1) 2

a — = =
z—1 =z+1 (z—1)(z+1) z2 —1

as required.
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b W _2yty Lo ldy 2241
dx x2 -1 oyde 22 -1
_y@®+1) _sf-1+2
o221 z2 —1
2
=1
+x271
1 1 .
=1 — using a
+a:—1 r+1 { g}

Integrating both sides with respect to = gives

/l@daz—/<l+ ! —L> dx
y dx z—1 x+1

/ldy—x+ln|a:1|ln|x+1|+c
Y

r—1

In |y| :x—i—ln(A o

D where InA =c

y = Ae” (m—;i) is the general solution of the differential equation.
x

When an object travels through a resistive medium, the rate at which it loses speed at any given

instant is given by kv ms~2, where v is the speed of the body at that instant and & is a positive

constant.

1

Suppose the initial speed is w ms~ . By formulating and solving an appropriate differential

1

equation, show that the time taken for the body to decrease its speed to su ms™ 1

.1
is = In 2 seconds.

The rate of change of speed is given by %

Our differential equation must reflect that the body loses speed, so % = —kv.
Separating the variables, we find 1 Z—: = —k.
v
Integrating both sides with respect to ¢ gives / = dv=—k / dt
v
In|v|=—kt+c

v=Ae " where A= ¢°

The initial speed (at t = 0) is u, so u= Ae **0 = A,

kt

v =wue "** is the particular solution of the differential equation.

When v =1u wehave Ju= ue

1 _ —kt
5—6

—In2 = —kt

= %ln 2 as required.
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Consider a curve in the first quadrant. The tangent at any point P cuts the z-axis at Q.

Given that OP = PQ, where O is the origin, and that the point (1, 4) lies on the curve, find the
equation of the curve.

Since OP = OQ, triangle OPQ is isosceles. Hence [PA]
is the perpendicular bisector of [OQ)].

The coordinates of A are (x, 0), so the coordinates of
Qare (2z, 0).

Since (PQ) is the tangent to the curve at P, the gradient (0] Q £
of the curve at P is the same as the gradient of [PQ]. z 7
Hence dv_ _y
dx a
ldy 1
ydz =

Integrating both sides with respect to x gives / l dy = — / 1 dx
Yy x
Inly|=—1Inl|z|+c¢
In|z|+1Inly| =c
In|zy| =c
xy = e =k where k is a constant.

Since the curve passes through (1,4), 1 x4=%

. . 4
the equation of the curve is zy =4 or y = —, where z > 0.
€T

HOMOGENEOUS DIFFERENTIAL EQUATIONS

Differential equations of the form Z—y = f(g), where y = y(z), are known as homogeneous
X x

differential equations.

They can be solved using the substitution y = vz where v is a function of x. The substitution will
always reduce the differential equation to a separable differentiable equation as follows.

If y =wvx where v is a function of z, then

dy @

= +v  {product rule}
dv v

& _ ) v

dz T
1 dv

o) v s - which is a separable differential equation.
v)— vV adxr x
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dy T+ 2y

a Use the substitution y = vz, where v is a function of z, to solve e
X X

b Find the particular solution if y = % when z = 3.

a If y =wx, then using the product rule we obtain Z— =v+zr—.
XL

Comparing with the differential equation, we find v+ — =

. . . 1 1
Integrating with respect to x gives ——dv = / —dz
v+1 i

Injv+1=ln|z|+c
Injv+1| =In|Az| where In|A| =c¢
v+1=Ax

But v=2, s0 Y4+1=42
xr

T
o, y=Ax? —z, where A is a constant.
b Substituting y = 2 and z =3 into the general solution, we find 2 = A x3*—3
94 =2
A=1
the particular solution is y = %:{:2 —z.
EXERCISE N
1 Solve the following initial value problems:
a - %1, =3 b ¥ _3rsecy=0, y(1)=0
dx dx
¢ e¥(222 +4z + 1) Z_z = (z+1)(e¥ +3), y(0)=2
d % =cos?y, yle)=1Z
dx ’ 4
2 a Showthat ——% —_1 2 b Solve @zgy_—my, y(0) =1.
z2 -1 z—1 z+1 dx z2 -1

3 According to Newton’s law of cooling, the rate at which a body loses temperature at time ¢ is
proportional to the amount by which the temperature 7'(¢) of the body at that instant exceeds the
temperature R of its surroundings.

a Express this information as a differential equation in terms of ¢, 7', and R.

b A container of hot liquid is placed in a room with constant temperature 18°C. The liquid cools
from 82°C to 50°C in 6 minutes. Show that it takes 12 minutes for the liquid to cool from
26°C to 20°C.
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4

The tangent at any point P on a curve cuts the z-axis at the point Q.

Given that OﬁQ = 90°, where O is the origin, and that the point (1, 2) lies on the curve, find
the equation of the curve.

The tangent at any point P on a curve cuts the z-axis at A and the y-axis at B.
Given that AP : PB =2:1 and that the curve passes through (1, 1), find the equation of the
curve.

A radioactive substance decays at a rate proportional to the mass m(¢) remaining at the time.
Suppose the initial mass is my.

a Construct and solve the appropriate initial value problem and hence obtain a formula for m(t).

b If the mass is reduced to % of its original value in 30 days, calculate the time required for the
mass to decay to half its original value.

Solve the following homogeneous differential equations using the substitution y = va, where v is
a function of x.

dy _z-y b W _2zty ¢ W _y-o

dx T dx T—y dx 2xy

a Show that the substitution y = vz (where v is a function of x) will reduce all inhomogeneous

differential equations of the form % =Yy (g) g(x) to separable form.
Xz x x

b Solve = Z—y =y+e® using this method.
X
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"oJ|[| THE INTEGRATING FACTOR METHOD

Suppose a first order linear differential equation is of the form 2_@; +P(z)y = Q(z), where y = y(z).
X

Generally, but not always, this type of equation is not separable.

However, suppose there is a function I(x), called an integrating factor, such that
d d
—U(@)y) = 1(x) 22+ 1(@) Px)y ... (+)
X i
= I(z) Q(x)
Then integrating both sides with respect to « would give
o)y = [ 1) Qe do
y = % / I(x) Q(x)dx and we could hence find a solution for y.
T

Now if such an integrating factor exists, then from (x),

1) L+ @)y = 1(x) 2L+ 1(2) Pla)y

I'(x) = I(x) P(x)
I'(z) _ r
Ty — @)

Integrating both sides with respect to x,

') 5
/I(m) d:c—/P(:c)d:I:

ln|I|+c=/P(x)dm

I(z) = Aef Pl@)dr  yhere A=e ¢ andis conventionally set as 1.
Thus the integrating factor is I(z) = ef FE@)dz

THE INTEGRATION FACTOR METHOD

Suppose 3—y + P(x)y = Q(z) where y = y(x).
T

) dz

1 Calculate the integrating factor I(xz) = ef P You do not need a constant of

integration.

2 Multiply the differential equation through by I(z).
3 Simplify the LHS and hence obtain I(z)y = / I(z) Q(x)dx + ¢, where c is a constant.

4 Integrate to obtain the general solution.
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Example 55

Solve the differential equation ;l—y + 322y = 622.
L

2
The integrating factor is I(z) = ef e o

Multiplying the differential equation through by e’ gives
e dy 4k 3x26m3y = 6%
dx
d xs) _ 2 a8
T (ye = 6z°e
ye””3 = /6x26$3 dx

ye"”3 =2 +c
y=2+ ce™®’

Example 56

Solve the initial value problem cos Z—y = ysinx + sin(2z), y(0) = 1.
Xz

sinz  sin(2x)

We can rewrite the differential equation as £
dx cos T cos

dy 4 (—tanx)y = 2sinx
dx

The differential equation is not separable, but is of a form such that we can use an integrating

factor.

The integrating factor is I(z) = ef = i ¢l
— ¢ln(cos )
= coST.

Multiplying the equation through by the integrating factor gives

cos j_y + (—cosz tanx)y = sin(2x)
X
(y cosx) = sin(2x)

ycosT = /sin(2:r) dx

= —1cos(2z) + ¢

T

But when z=0, y=1

1=—12cos(0)+c
_3
c=3
the solution of the initial value problem is ycosz = 2 — 1 cos(2z)
3 — cos(2x)

y:

2cosx
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EXERCISE O
1 Solve the following using the integrating factor method.
dy - W 3y o =
a dx+4y—12 b - 3y=-e€*, y(0)=2
dy T dy
c —+y=z+e”, y(1)=1 d x—=+y==xcosx
dx dx

2 Solve the differential equation (2 + 1)y + « Z—y =z —2%
T

ACTIVITY LAPLACE TRANSFORMS

Laplace transforms provide a useful link between improper integrals and differential equations.

(e.0)
The Laplace transform of a function f(x) is defined as  F(s) = L{f(z)} = / e %" f(z) dx.
0

What to do:
1 Show that:
a E{ea’”}zsia, s>a b E{x}zsiz, 5>0
¢ L{sin(ax)} = 32;;(12, s>0
2 Show that:
a L{f'(x)} = sL{f(x)} — £(0) b L{f"(z)} = s2L{f(x)} — s£(0) — f'(0)

3 Consider the differential equation f”(z) + f(z) ==, f(0)=0, f(0)=2.
Assuming that  £{g(x) +h(2)} = L{g(a)} + L{(x)}, showthat L{f(2)} =+

Hence find a possible solution function f(z) and check your answer.

1
s2+1°
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CLAURIN SERIES DEVELOPED
A DIFFERENTIAL EQUATION

Consider a first order differential equation with initial condition:

% = h(z,y) where y(zp) =yo for some constants zg, yo € R.
i

Depending on the form of h(x, y), it may or may not be possible to obtain an explicit particular
solution y(z).

However, provided the necessary derivatives exist, we can determine the nth degree Taylor polynomial
approximation to the particular solution y(z) about z( as follows:

y(zo) = yo
y'(z) = h(z, y) o Y (w0) = Mo, yo)
Y (z) = di(h(m, y)) . we can obtain 3" (x) using g, yo, and y/'(zo) found above.
X
d
V(@) = L (/@)

Once y(z0), ¥ (x0), ¥ (x0), ..., y™ (z¢) have been determined, the nth degree Taylor polynomial
approximation to y(z) about xy can then be written as:

y" (o) (z — z9)* y(™ (x0) (x — zo)"
T , ,

T (x) =y (x0) + ¥ (20) (z — 20) +

dy

Consider the initial value problem ik dzy, y(0)=1.
XL

a Without solving the system, find the first three non-zero terms of the Maclaurin polynomial
expansion for y.

b Solve the system exactly to find the particular solution.

dy _ _ _

a =7 doy = z (1 — 4y)
d? d
EZQJ = %(x(l—zly))

By dy ( dy) d?y
e i 4E+1>< 45 +x 4dw_2

d d
— 8 _ g %Y
dx d.
d* d? d ds3
2Y _ _g8Y _4%Y 4 —4%Y
dz4 dxz? dxz? dx3
2 3
_19%°Y _ 4, %Y
dx? dx
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Now y(0)=1, soat (0, 1): Z—y =0
X
2
% =1-4+0=-3
d3y
=
d4y .
ad = 9
2 4
y has Maclaurin polynomial 1 — 3% + %TT ... whichis 1— 322 + 224 ..
dy _
b —= x (1 —4y)
1 ﬁ E
1—4y dx

1
/14ydy—/a:da:

2 But y(0)=1

1 _13
_Zln|1—4y|—?+c Lopoq
In|l—4y| = —22% +¢ B—_

<
I

3
, 50 1
1—4y = Ae™ 3
1 B —242 % <1+ 2)
Y=y — be

EXERCISE P

~y
1 Consider the differential equation Z—y = eT —1, where y(0)=0.
X

a Find the first three non-zero terms in the Maclaurin polynomial expansion of y.

b Verify that y =1In (%) is a particular solution.

2 Consider the differential equation Z—y =22+ Y, where % =1 when z=1.
X x X

a Find the first three non-zero terms in the Maclaurin polynomial expansion of y about = = 1.
b Solve the system exactly to find the particular solution.
dy 3z — 2y

3 Consider the initial value problem e y(1) = 0.
X x

a Without solving the system, find the first three non-zero terms of the Taylor polynomial
expansion for y about = = 1.

b Solve the system exactly to find the particular solution.
4 Consider the initial value problem cosx Z—y +ysinz =1, y(0)=2.
X

a Find the first three non-zero terms in the Maclaurin polynomial expansion of y.

b Solve the system exactly to find the particular solution.
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Example 58

k

00 ook

Given that Z—' is convergent for all z € R, show that e* = > gli_' using the following
k=0 ™ k=0 "

steps.

. X gk dy
a Show that if y(z)= >  —, then —=

= y.
=0 k! dx

b Solve the differential equation Z—y =y to obtain the general solution.
L

o .k
¢ Hence prove e* = -
k=0 k!
) .Tk ZD2 133
a Let y(x):gogzl—i—x—i-a—i—g—i-....
dy 2¢ 322 43
e
dx * 2! 3! * 4! +

z2 23
=1+$+5+5+....

o0 k

8

=0 k!
=Y
b Consider % =y

&
1 dy
y dx

/ldy—/ldx
y

In|y| =« + ¢, where cis a constant
y = Ae®, where A = £e® is a constant.

=1

ook
¢ Since y(z)= ), z—' is a solution to the differential equation for all = € R,
k=0
k

(&)
ylz) = > w—' = Ae” for some constant A.
k=0 ~*

0)=1, so A=1
k

o0
Tz _ i
Hence e* = kgo i for all =z € R.

Now y

—

5 Let y(;p) — ioj pp—1)...(p—n+1)z™
n=0

' for |z| < 1. From Exercise L.2 question 8, y is a well
n.

defined function on |z| < 1 since the binomial series was shown to be convergent on the interval
—-l<z<l

a Show that for —1 < z < 1, y satisfies the differential equation (1 + x) dy _

dz py.

b Find the general solution to the differential equation in a.
¢ Hence show that y(z) = (1+z)? forall z e ]—1,1][.
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REVIEW SET A

1 Prove that lim nz _ 0.

r—0o0 I

eTsinz

2 Find lim
x—0

T

3 Find the limit, if it exists, of the sequence {u,} as n tends to infinity, if u,, equals:

8 — 2n — 2n?2 1

L z 14 (—1)"

4+ 6n+7n? b 3+ —+nl+(-1)"]
c _2nt13 d arctann

\/6n2 +5n —17

2 3 4 5
+ .... converges.

L4 Prove that the series .
13+1+23+1+33+1+43+1+53+1

o0 n
5 a For what values of = does ) < 3962) converge?

n=1 \T —

oo n
b Find > ( 3962) in terms of x.
n=0

T —

for the x values found in a.

X n(3z)" ! _
¢ Show that n;o (x—2)7+tT — 4(z+1)2

2 z3

6 Find the set of real numbers for which the series =z + 1$— + a_a + .... converges.
— X — X

1
7 Using an appropriate Maclaurin series, evaluate / sin(z?)dz  to three decimal places.
0

AT
8 Let X be a random variable such that P(X =z) = £ ')‘ for z=0,1,2, ...

x:

o0
Prove that » P(X =z)=1.
=0

9 a Draw the slope field using integer grid points for z, y € [—3, 3] for the differential

. d
equation <L =Z.
dx

Y
b Draw on your slope field the isoclines % =k for k=0, 1, +4.

T

. . . d
10 Solve the differential equation d—y =
X

given that y =2 when = = 2.

T —

11 By finding a suitable integrating factor, solve 3—1} Y=z y@) =o.
XL x
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d
12 On the slope field for <Y = 2z — y2 shown, EEEE R
) dz T T T T A A O B
sketch the solution curves through T T A O O B
R T T A O O A A B B
a (0,0) b (2 3). T S S R A R A B R
L I e T A O B R R SR WU NN
LI T S R S O S NN A
I R I T R O S NN A A A
TS R N A AV AN A A A
L T S N A A A B B B A
R N SN AV A A A B B A
VANNT s
VANt
21\ s 1% A ®
VAN N =
TR SN A A B BN B A A
VN2 NN NS =/
A\
1 Find the limit, if it exists, of the sequence {u,} as n tends to infinity, if u,, equals:
A (=)™ (2n—1) 0.9™
n 110517
¢ Vn+ vn—1 d s L
3n+1 6n2+1
. 1‘2 af:3 1‘4 . -
2 Prove that the series m+?+?+j+.... is convergent for —1 <2z <1 and divergent

for |z| > 1. Determine the convergence or divergence of the series for = = +1.

x —_—
3 Determine whether or not the series ) sin (%) is convergent.
k=1
o0
4 Use the Comparison Test to prove that the series T2 diverges.
r=1 r
. L (=it
5 a Show that the series S, = >, ~———— converges as n — .
=g In(k —1)
. . . L . = (=dyt
b Find the maximum possible error in using Sio to estimate R
k=3 1~ —

6 Find the Taylor series expansion of (x —1)e®~! about x =1 up to the term (z — 1)3.

7 Find constants a and b such that y = az + b is a solution of the differential equation

dy
—= = 4x — 2.
dx v y
8 Find the general solution of the differential equation ;l—y = 229% — ¢2.
X

9 Find the equation of the curve through (2, 1) given that for any point (z, y) on the curve,
the y-intercept of the tangent to the curve is 3x2y3.
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10 Match the slope fields A, B, and € to the differential equations:

a @:y—i-l b
dz

A

11 The population P of an island is currently 154. The population growth in the foreseeable future

is given by %:0.2P <1—%), t > 0.

. 1
a Write =+ —
P 400 — P

Find P as a function of time ¢ years.

as a single fraction.

Estimate the population in 20 years’ time.

O an O

Is there a limiting population size? If so, what is it?

12 Let f(z)= f S —

(1+2?) L _ 1
b For z #0, show that = f(ﬂc)—;)r where 7 = TraT

¢ For which values of z € R is f(x) convergent? Hence state the domain of f.

For each z for which f(x) is convergent, find the value of f(x).
e Sketch y = f(x).

REVIEW SET C

1 Find the limit, if it exists, of the sequence {u,} as n tends to infinity, if u,, equals:

a n—vni+n b (3" +27)

3~
®

c — d (-1)"ne "

1
-

(&)
2 Explain why the series > 3" is not convergent.
r=1

o0

3 Determine whether )

——+ Is convergent or divergent.
n=o In(n?)

o0
4 Suppose Y. a, is convergent, where a, >0 forall n € Z".
n=1

o) 0 1 2
a Provethat > a2 and Y <an - —) are also convergent.
n=1

b Would these results follow if a,, € R?
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1 1 1

5 a Show that ——— = = —
z(z+1) =z z+1

[e.°]
b Use a and the Integral Test to prove that the series ), ——— converges.
=1 n(n+1)
n
¢ Let S, =) — be the nth partial sum for the series in b.
= i(i+1)
i Use ato show that S,, =1 — ! .
n+1
o g &9 1
ii Hence find the value of the sum of the convergent series _
n=1 n(n + 1)

6 Lect R, be the error term in approximating f(z) = In(1 +x) for 0 <z <1 using the

. . . 1
first n+ 1 terms of its Maclaurin series. Prove that |R,| < P for 0<z<1.
n

7 Find a simplified expression for 1—z + 2% — 23+ ... where —-1<z <1
Hence find a power series expansion for f(z) =In(1+2z) for —1<z<1.

8 A curve passes through the point (1, 2) and satisfies the differential equation
dy
— =z —2y.
dx . 4

Use Euler’s Method with step size 0.1 to estimate the value of y when = = 1.6.

9 A water tank of height 1 m has a square base 2 m x 2 m. When a tap at its base is opened, the
water flows out at a rate proportional to the square root of the depth of the water at any given

time. Suppose the depth of the water is A m, and V' is the volume of water remaining in the
tank after ¢ minutes.

. . . . . d
a Write down a differential equation involving d_‘t/ and h.

b Explain why V = 4h m3 at time ¢. Hence write down a differential equation involving

dh
— and h.
dt

¢ Initially the tank is full. When the tap is opened, the water level drops by 19 cm in
2 minutes. Find the time it takes for the tank to empty.

10 Use the substitution y = vz where v is a function of z, to solve the differential equation
d a
Yy_r ¥

dx y x

11 Use an integrating factor to solve dy _ cosz —ycotz, y (%) =0.
L

REVIEW SET D

1 Find the limit, if it exists, of the sequence {u,,} as n tends to infinity, if u,, equals:

3X5EXTX....Xx(2n+1) b n(2cos<l>—sin(l)—2)
2X5X8X....x (3n—1) n n

o0
2 Prove that the series >

n=2

———— 1S convergent.
n(lnn)?2 &
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10

g q g g = —-3)"
Determine the interval and radius of convergence of the series (m—g) .

n=1 n2

o0
Determine whether the series ) (

n
) converges or diverges.
n=0

n+5
Estimate -3 correct to three decimal places using the Maclaurin approximation:

17 22 (n) " (n+1) c) pntl
f(w>=f<0)+f’(0)fc+f(§!) I T(L?) - (n—(&—)l)!

Use the substitution y = vz where v is a function of z, to solve the initial value problem

d
wyd—z=1+w+y2, y(1) =0.

nooq c
a Provethat e— > —=—"_
2R (et

b Using the fact that e < 3, show that for n > 3:

where 0<c<1.

nooq &
m<6_,§oﬁ<m and hence

| " nl 3
< nle—

il —
n+1 =0 k! n+1

3
N1
¢ Hence, prove by contradiction that e is an irrational number.

By finding a suitable integrating factor, solve 3_3; + 3 _ 8z, y(1)=0.
XL x

. g 3
has z-intercept 3z and y-intercept ?y

which passes through the point (1, 5).

3r

The inside surface of y = f(z) is a mirror. Ay
Light is emitted from O(0, 0).
All rays that strike the surface of the mirror are e
reflected so that they emerge parallel to the axis of
symmetry (the x-axis).

P(z,y) y=f(x)

The tangent to a curve at the general point P(z, y)

Given that = > 0, find the equation of the curve

0
a Explain why 0 = 2a. - / »
b Explain why the gradient of the tangent at a tangent \
general point P(x, y) on the mirror is given at P
by W _ tana. y=—f(z)
dx i
/22 &+ 02 —
¢ Use the identity tan(2a) = ming to deduce that tana = Y2 Y~ T
1 —tan® « Yy
/22 + 02 —
d Find the general solution to the differential equation % o MR O by making
L Yy

the substitution 72 = 22 + y2.
e What is the nature of y = f(x)?
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11 Consider the differential equation % =ylnz, x>0, where y(1) = 1.
X
a Find the first three non-zero terms in the Taylor polynomial expansion of y about = = 1.
b Hence estimate the solution to the initial value problem Z—y =ylnz, y(l)=1
L

¢ Solve the initial value problem in b exactly.
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THEORY OF KNOWLEDGE ELLI’S TRUMPET

Consider f(z) = —. An infinite area sweeps out a finite volume. Can this be reconciled with our
x

intuition? What does this tell us about mathematical knowledge?

Calculus provides us with a set of procedures for manipulating symbols, such as differentiation and
integration. Justifying how, and importantly when, such manipulations lead to correct answers is the
subject of analysis which underpins calculus. These justifications need to make use of arguments
involving infinite processes such as infinitely small quantities and limits over an infinitely large
range.

These are very subtle concepts which mathematicians and philosophers have discussed and debated
for many thousands of years, such as in Archimedes’ work in finding areas and volumes. Much of
the debate has focused on paradoxes.

A paradox is an argument that appears to produce an inconsistency, such as resulting in 1 = 0.
Often the paradox enables a definition, technique, or logical argument to be refined.

However there are still some things which appear to be paradoxical and Torricelli’s trumpet, also
sometimes called Gabriel’s Horn, is one of these.

: 1 5 :
To create this shape we take the graph of y = — for x > 1 and rotate it around the x-axis to
T

create a solid of revolution. The two questions we wish to ask are:

e What is the volume of this shape?
e What is the surface area of this shape?

To answer these questions we shall use the modern techniques of calculus. Torricelli’s original
arguments, made in the early 1600s, predate the systematic development of calculus by Newton and
Leibnitz later that century. His argument relied on Cavalieris Principle:

Take two solids included between parallel planes, and cut the solids with another parallel plane.
If the areas are always in the same ratio, then the volumes are also in the same ratio.

Think of a solid, such as a cone, made up of a stack of
cards. You can displace the cards without altering the
volume. If you can change the shape of the cards without
altering the areas then you also don’t change the volume.
Cavalieri’s Principle is another extension to the case when
the respective areas are in constant ratio.
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1 What place does an “intuitive” rule such as Cavalieri’s Principle have in mathematics?

2 How can Cavalieri’s Principle be used to find the volume of a sphere from the known volume
of a circular cone? Can this be regarded as a valid proof of the formula?

In order to consider the volume and surface area we will look at a finite part of the trumpet from
r=1 to x =N and thenlet N — oc.

VOLUME

We imagine a plane perpendicular to the z-axis, cutting the axis at x. Y4

. . . 1
The trumpet and the plane intersect at a circle of radius —.
X

The area of the circle is simply 7'('%. “
X

To calculate the volume we sum the infinitesimal areas of these
Ny i 7|2 1
discs as 7r/ —de:w[——] :w(l——).
1 T wllq N

As N — oo we see that the volume converges to 7r. It is somewhat surprising that an infinite shape
can have a finite volume. However, this is similar to the idea that an infinite series of positive terms
can sum to a finite length.

\j

SURFACE AREA

N 2
To calculate the surface area we use the formula S = 27 / yy/ 1+ (;l—y) dx.
1 L
1 d 1 N 1 1
Since y = — we have & —— and so the integral becomes S = 27r/ —4/1+ = dz.
B dx W 1z W
. 1 1 1
Noting that —, /14 — > —, we find that
T T x
N 1 1 N 1
5—271'/ —,/1+—4dx>27r/ —dz =27 In(N).
1 T x 1 x

As N — oo, In(N) diverges, and so the surface area S also diverges.

Hence we have a finite volume with an infinite surface area. This is a strange and controversial
result. Thomas Hobbes, the English Philosopher, said “fo understand this for sense, it is not required
that a man should be a geometrician or logician, but that he should be mad”.

3 Imagine filling the trumpet with a liquid. While the trumpet holds a finite volume, what
happens when a thin layer coats the surface?

4 What do we do when a physical problem yields a mathematical result with no physical
meaning?
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APPENDIX A: METHODS OF PROOF

Greek mathematicians more than 2000 years ago realised that progress in mathematical thinking could
be brought about by conscious formulation of the methods of abstraction and proof.

By considering a few examples, one might notice a certain common quality or pattern from which one
could predict a rule or formula for the general case. In mathematics this prediction is known as a
conjecture. Mathematicians love to find patterns, and try to understand why they occur.

Experiments and further examples might help to convince you that the conjecture is true. However,
problems will often contain extra information which can sometimes obscure the essential detail,
particularly in applied mathematics. Stripping this away is the process of abstraction.

For example, by considering the given table of values one may conjecture: a | b | a2l b2
“If a and b are real numbers then a < b implies that a? < b%.” 112114
However, on observing that —2 <1 but (—2)2 £ 1> we have a Z Z 196 ;g
counter-example. 5 7 | 25|49
In the light of this we reformulate and refine our conjecture: 6 19 |36]81

“If @ and b are positive real numbers then a < b implies a? < b2.”

The difficulty is that this process might continue with reformulations, counter-examples, and revised
conjectures indefinitely. At what point are we certain that the conjecture is true? A proof is a flawless
logical argument which leaves no doubt that the conjecture is indeed a truth. If we have a proof then the
conjecture can be called a theorem.

Mathematics has evolved to accept certain types of arguments as valid proofs. They include a mixture
of both logic and calculation. Generally mathematicians like elegant, efficient proofs. It is common not
to write every minute detail. However, when you write a proof you should be prepared to expand and
justify every step if asked to do so.

We have already examined in the HL Core text, proof by the principle of mathematical induction.
Now we consider other methods.

DIRECT PROOF

In a direct proof we start with a known truth and by a succession of correct deductions finish with the
required result.

Example 1: Prove thatif a, b€ R then a<b = a< 2kl
Proof: a<b = g < g {as we are dividing by 2 which is > 0}
a  a a b . a .
= ;t5;<3+t3 {adding 5 to both sides}
= a< ath
2

Sometimes it is not possible to give a direct proof of the full result and so the different possible cases
(called exhaustive cases) need to be considered and proved separately.
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Example 2: Prove the geometric progression: For n € Z, n >0,

rrtl g

l4rigr?y 4=l o1 71
n+1, P=1
Proof: Case r» = 1: 14+rt4+r2 4. "
=14+ 1+ 1+..+1 {n+1 times}
=n-+1
Case r # 1: Let Sp,=1+r'+r24+...+7r"

Then 7S, =r'+r24+r3+. . 4"t
rSy — 8y =r"tt —1 {after cancellation of terms}
(r—1)8, =r"*1 -1
rrtl g

Sy = — {dividing by r —1 since r # 1}
——

Example 3: Alice looks at Bob and Bob looks at Clare. Alice is married, but Clare is not. Prove
that a married person looks at an unmarried person.

Proof: We do not know whether Bob is married or not, so we consider the different (exhaustive)
cases:

Case: Bob is married. If Bob is married, then a married person (Bob) looks at an
unmarried person (Clare).

Case: Bob is unmarried. If Bob is unmarried, then a married person (Alice) looks at an
unmarried person (Bob).

Since we have considered all possible cases, the full result is proved.

EXERCISE

1 Let [ = \/5, which is irrational. Consider I and I1 I, and hence prove that an irrational number
to the power of an irrational number can be rational.

PROOF BY CONTRADICTION (AN INDIRECT PROOF)

In proof by contradiction we deliberately assume the opposite to what we are trying to prove. By a
series of correct steps we show that this is impossible, our assumption is false, and hence its opposite is
true.
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Example 4: Consider Example 1 again but this time use proof by contradiction:

Prove that if a, b€ R then a<b = a< a;rb.

Proof (by contradiction):

For a < b, suppose that a >

= 2a>2 (a ;— b) {multiplying both sides by 2}
= 2a>a+b
= a=b {subtracting a from both sides}

which is false.
Since the steps of the argument are correct, the supposition must be false and the alternative,

a < aT—H) must be true.

Example 5: Prove that the solution of 3* = 8 is irrational.

Proof (by contradiction):
Suppose the solution of 3% = 8 is rational, or in other words, that x is rational. Notice that

z > 0.
== =2 where p,qeZ, q #0 {and since x >0, integers p, ¢ > 0}
q
= 39 =8
o\ 4
= <35> = 81
= 3P = 87

which is impossible since for the given possible values of p and ¢, 37 is always odd and 87 is
always even. Thus, the assumption is false and its opposite must be true. Hence « is irrational.

Example 6: Prove that no positive integers = and y exist such that z% —y? = 1.

Proof (by contradiction):

Suppose z, y € Z* exist such that 2% —y? = 1.

= (z+y)lz—y) =1
= z+y=1and z—y=1 or z+y=—-1 and 2 —y=—1

case 1 case 2
= z=1, y=0 (fromcasel) or z=-1, y=0 (from case 2)

Both cases provide a contradiction to x, y > 0.
Thus, the supposition is false and its opposite is true.

There do not exist positive integers x and y such that z?2

—y2:1.

Indirect proof often seems cleverly contrived, especially if no direct proof is forthcoming. It is perhaps
more natural to seek a direct proof for the first attempt to prove a conjecture.
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ERRORS IN PROOF

One must be careful not to make errors in algebra or reasoning. Examine carefully the following examples.

Example 7: Consider Example 5 again: Prove that the solution of 3% = 8 is irrational.

Invalid argument: 3 =8
= log3” =log8
= xlog3 =log8

log 8
= =
* log 3

where both log8 and log 3 are irrational.

= x is irrational.

The last step is not valid. The argument that an irrational divided by an irrational is always

irrational is not correct. For example, % =1, and 1 is rational.

Dividing by zero is not a valid operation. % is not defined for any a € R, in particular % # 1.

Example 8: Invalid “proof” that 5 = 2

0=0
= 0x5=0x2
0 . >0 . 2 [dividing through by 0}
= 5 =2, which is clearly false.

This invalid step is not always obvious, as illustrated in the following example.

Example 9: Invalid “proof” that 0 = 1:

Suppose a =1
= a’>=a
= a?—1=a—-1
= (a+1l)(a—1)=a—1
= a+1=1 ... (%
= a=0
So, 0=1

The invalid step in the argument is () where we divide both sides by a — 1.
Since a =1, a—1=0, and so we are dividing both sides by zero.

Another trap to be avoided is to begin by assuming the result we wish to prove is true. This readily leads
to invalid circular arguments.
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Example 10: Prove without decimalisation that /3 — 1 > %

Invalid argument:

1
\/5—1>\—5

(V3-1)2 > (%)2 {both sides are > 0, so we can square them}
4-2v3>1
1>2V3
7> 43
7% > 48 {squaring again}
49 > 48 which is true.

A

Hence v/3 —1 > % is true.
Although /3 —1 > % is in fact true, the above argument is invalid because we began by
assuming the result.
A valid method of proof for /3 —1 > % can be found by either:
e reversing the steps of the above argument, or by

e using proof by contradiction (supposing V3—-1< LQ).

It is important to distinguish errors in proof from a false conjecture.

Consider the table alongside, which shows values of n? —n + 41 for various n | n?2—-—n-+41
values of n € N. 1 41
From the many examples given, one might conjecture: 2 43
3 47
“For all natural numbers n, n? —n + 41 is prime.” 4 53
This conjecture is in fact false. £ Gl
6 71
For example, for n =41, n? —n +41 = 41% is clearly not prime. 7 83
8 97
It takes only one ° L
10 131
counter-example to prove a
. . 11 151
conjecture is false.
12 173
\ ” 13 197
f
30 911
99 9743
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IMPLICATIONS AND THEIR CONVERSE

If .... then ....

Many statements in mathematics take the form of an implication “If A then B”, where A and B are
themselves statements. The statement A is known as the hypothesis. The statement B is known as the
conclusion.

Implications can be written in many forms in addition to “If A then B”. For example, the following all
have the same meaning:

implies
)
A hence B.

thus
therefore

Given a statement of the form “If A then B”, we can write a converse statement “If B then A”.

If we know the truth, or otherwise, of a given statement, we can say nothing about the truth of the
converse. It could be true or false.

A statement and its converse are said to be (logically) independent.

For example, suppose z is an integer.

e The statement “If x is odd, then 2z is even” is frue, but its converse “If 2z is even, then x is
odd” is false.

e The statement “If 2x is even, then x is odd” is false, but its converse “If = is odd, then 2z is
even” is true.

e The statement “If x > 1, then Inz > 0" is true, and its converse “If Inx > 0, then z > 1”
is also frue.

e The statement “If = =5, then z? = 16” is false, and its converse “If z? = 16, then x = 5"
is also false.

EXERCISE

Prove or disprove:
1 If z is rational then 2% = 3.

2 If 2% # 3 then x is rational.

EQUIVALENCE

Some conjectures with two statements A and B involve logical equivalence or simply equivalence.
We say A is equivalent to B, or A is true if and only if B is true.
The phrase “if and only if” is often written as “iff” or <.

A< B means A= B and B= A
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In order to prove an equivalence, we need to prove both implications: A= B and B = A.

For example: 2> =9 < x =3 Iis a false statement.
r=3 = 22=9 istrue
but z>=9 % x=3 asx maybe —3.

Example 11: Prove that (n +2)2 —n? is a multiple of 8 < n is odd.

Proof: (=) (n+2)>—n? isa multiple of 8

—

= n?+4n+4—n?=8a for some integer a
= 4n+4=8a

= n+1=2a

= n=2a-1

=

n is odd.

(<) nisodd

= n=2a—1 for some integer a
n+1=2a
4n +4 = 8a
(n® +4n+4) —n®> = 8a
(n+2)? —n? is a multiple of 8.

In the above example the (=) argument is clearly reversible to give the (<=) argument. However, this is
not always the case.

Example 12: Prove that for all = € Zt, x is not divisible by 3 < 22 — 1 is divisible by 3.

Proof: (=) = is not divisible by 3
= either =3k +1 or z=3k+2 forsome ke Z" U{0}
= 2°—1=9k>+6k or 9%k?+12k+3
=3(3k* +2) or 3(3k*+4k+1)
= 2 —1 is divisible by 3.

(<) 2% —1 is divisible by 3
= 3|21
= 3|(z+1)(z—-1)
= 3|(x+1) or 3|(x—1) {as3isa prime number}
= 3tz

or in other words, z is not divisible by 3.
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NEGATION
For any given statement A, we write not A or —A to represent the negation of the statement A.
For example: A -A
x>0 r<0
x is prime x is not prime
x is an integer x is not an integer
For z e R: x 1is rational x 1is irrational
For z € C: z is real z=a+bi, a,beR, b#0
For z € Z* U {0}: | = is a multiple of 3 x is not a multiple of 3
x=3k+1 or 3k+0r2 for ke ZTU{0}

PROOF OF THE CONTRAPOSITIVE

To prove the statement “If A then B”, we can provide a direct proof, or we can prove the logically
equivalent contrapositive statement “If not B, then not A” which we can also write as “If —B,
then —A”.

For example, the statement “If it is Jon’s bicycle, then it is blue”
is logically equivalent to  “If that bicycle is not blue, then it is not Jon’s”.

Example 13: Prove that for a, b € R, “ab is irrational = either a or b is irrational”.

Proof using contrapositive:

a and b are both rational = a=2 and b=L where p,qr,sEL, q#0, s#0
S

q

s

= ab= <B> <1> =2 {where gs#0, since g, s # 0}
q qs
= ab is rational {since pr, qs € Z}

Thus ab is irrational = either a or b is irrational.

Example 14: Prove that if n is a positive integer of the form 3k +2, £ >0, k € Z, then n is not
a square.

Proof using contrapositive:
If n is a square then
n has one of the forms (3a)?, (3a+1)? or (3a +2)?, where a € Z* U {0}.
== n=9a2, 9a2 +6a+1 or 9a%+12a+4
= n=3(3a?), 3(3a>+2a)+1 or 3(3a> +4a+1)+1
= n has the form 3k or 3k +1 only, where k€ Z* U {0}
= n does not have form 3k + 2.

Thus if n is a positive integer of the form 3k + 2, k>0, k € Z, then n is not a square.
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USING PREVIOUS RESULTS

In mathematics we build up collections of important and useful results, each depending on previously
proven statements.

Example 15: Prove the conjecture:

“The recurring decimal 0.9 = 0.99999999.... is exactly equal to 1”.

Proof (by contradiction):

Suppose 0.9 < 1

= 09< 221 {We proved earlier that a <b = a <2 + b}
13 2] 1.99999999....
= 09< - {Ordmary division: 0.09999999. }

= 0.9<0.9 clearly a contradiction
Therefore the supposition is false, and so 0.9 > 1 is true.
Since, 0.9 > 1 is absurd, 0.9 = 1.
Proof (Direct Proof):
0.9 = 0.99999999....
= 0.9 + 0.09 4 0.009 + 0.0009 + ....
= 0.9 (1 + 75 + 755 + 1905 + )

with 7= = and ‘11—0’<1}

=2 < ! ) {Using the previously proved Geometric Series
10
X
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THEORY OF KNOWLEDGE AM’S RAZOR

In order to understand complicated concepts, we often try to break them down into simpler
components. But when mathematicians try to understand the foundations of a particular branch
of the subject, they consider the question “What is the minimal set of assumptions from which all
other results can be deduced or proved?” The assumptions they make are called axioms. Whether
the axioms accurately reflect properties observed in the physical world is less important to pure
mathematicians than the theory which can be developed and deduced from the axioms.

Occam’s razor is a principle of economy that among competing hypotheses, the one that makes the
fewest assumptions should be selected.

1 What value does Occam’s razor have in understanding the long-held belief that the world was
flat?

2 I[s the simplest explanation to something always true?

Is it reasonable to construct a set of mathematical axioms under Occam’s razor?

One of the most famous examples of a set of axioms is given by Euclid in his set of 13 books called
Elements. He gives five axioms, which he calls “postulates”, as the basis for his study of Geometry:

1. Any two points can be joined by a straight line.
2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as radius and one
endpoint as centre.

4. All right angles are congruent.

5. Parallel postulate: If two lines intersect a third in such a way that the sum of the inner angles
on one side is less than two right angles, then the two lines inevitably must intersect each other
on that side if extended far enough.

4 s the parallel postulate genuinely an axiom, or can it be proved from the others?
5 What happens if you change the list of axioms or do not include the parallel postulate?

6 What other areas of mathematics can we reduce to a concise list of axioms?
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APPENDIX B:  FORMAL DEFINITION OF A LIMIT

The informal definition of a limit we were given in Section B is sufficient for our study here. However,
for completeness we justify its use by considering and interpreting the formal definition:

The formal definition of a limit of a function:

Let f be a function defined in an open interval about 2 = a, except f(a) need not be defined.
The number [ is called the limit of f as x approaches a if, for any value ¢ > 0, there exists a
corresponding value § > 0 such that 0 < |z —a| < § ensures |f(z) —I| <e.

We write lim f(z) =1 to denote “the limit of f as x approaches a, is [”.
r—a

To interpret this definition, note that [ and a are constants, and x and f(z) are variables.

The value ¢ > 0 is any positive value, but in particular we consider ¢ a very, very small positive value.

In this case If(z) -1 <e vy
& —e<flx)—-l<e
s l-e<flx)y<l+e I+¢
< the value f(z) is very, very close to [ l
l—¢

f(z) will lie in the shaded band of values shown.

T

\j

Similarly, the value § > 0 is a positive value, and in particular we consider ¢ a very, very small positive

value.
yh

In this case O<|x—al<é
S rx#a and —d6<r—a<d
S ax#a and a—d0<zr<a+d
so that z is very, very close to, but not equal to, the value a.

v a—6 a a+o z

Putting this all together, we have that f has limit [ as x approaches a if for any choice of ¢ > 0,
there always exists a value § > 0 such that the value f(x) will be within distance & from I, whenever
x 1s within distance ¢ from a, but not equal to a. In particular, this must be true for € > 0 chosen as

small as we like.
/ y=f(z)
l+¢

l—s\/

IS)
|
>
Q
)
+
>
]Y
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These algebraic and geometric interpretations of the formal definition lead to the informal definition of
the limit of a function given in Section B.

ESTABLISHING LIMITS

By considering the identity function f(z) = x, we intuitively AY
see that lim x = a for any constant a € R.
This is proved formally as follows:
, I—a y=f(z)=x
Suppose f(z) =2 and a € R is a constant. For any & > 0, -
there exists 0 =& > 0 such that
O<|z—al<é
= |z—al<e {since 6 =¢} = —a— T
= |f(z)—al] <e {since f(z)==x} v

Since an appropriate 6 can be found for any choice of ¢ > 0, by the formal definition of a limit,
lim = a, for a any constant.

r—a
Arguments such as this can be used to establish the limit laws presented in Section B.
When we define new functions using a sum, composition, or some other combination of simpler functions,

the limit laws help us calculate limits for these new functions using what we already know about the
simpler functions.

: o 3(x?—1)
Example: Determine the limit lim ——=.
z—1 x—1

Using Limit Laws

3(z2 - 1)

z—1 xz—1
_ i S+ 1)
=im =5
= lim1 3(z+1) {using Limit Laws with x—:i =1 a constant, since x # 1}
= lim (3z + 3)

z—1
— ( lim 3) ( lim x) - ( lim 3) {by the Limit Laws, since each limit exists}

=1 =1 =1

=3x1+3 {since lirn1 3 =3 from the Limit Laws
=6 and lim1 x =1 from above using a =1}

Using the formal definition directly (not required for this course)

3(z2 —1)

From the graph of y = we observe that for  near 1, f(x) is close to the value 6.

2 _
We conjecture that lim de =)

1 = 6, and must prove this formally.
T—> xr —
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3(z2 —1)

For z #1, |f(z)—6|<e < I
T

—6‘<s

SN+l o
(z—1)
B(z+1)—6|<e
13z +3—6| <e
Bz — 3| <e
3lz—1]<e

<

t ¢80 ¢

lz—1] < <
3

Therefore, for all € > 0, there exists § = % >0 suchthat 0 < |z — 1] < ¢ implies |f(z) —6] <e.

i oo 322 1)
Thus by the formal definition of the limit, hm1 - = 6.
o= T —
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Worked Solutions

EXERCISE A

1Ifa>0 laj=a = la|>0 .. (1)
If <0, |a] =—a where —a >0 = |a] >0
From (1) and (2), |a| > 0 forall a € R.

o)

—a if —a>0
2 |—al=<0 if —a=0
—(—a) if —a<0
—a if a<0
=<0 ifa=0
a ifa>0
a if a>0
:{—a if a <0
= |a]
or |—al=|-1xal|
=|=1[la]  {lab] =]al|b]}
= 1]a
= |al

3 P, is:

la1 + a2 + a3 + ... + an| < |a1| + |az| + |az| + ... + |an|

forall n e Z+t

Proof: (by induction)

(1) If n=1, |a1| < |a1] istrue = P is true.

2) If n=2, |a1+ az2| < |a1|+ |az| {Triangle inequality}

(3) If Pyistrue, |ay + a2 + .... + ag| < |ai|+|az|+....4|ak]

lar + a2 + ... + ax + ak+1]
= (a1 + a2 + .... + ar) + agt1]

lar + a2 + ... + ak| + |ak+1] {using Case 2}
la1| +laz| + ... + |ak| + lak+1|  {Truth of Py}
Thus Py, Ps are true and Pj ;1 is true whenever P, is true
= P, is true. {The Principle of Mathematical Induction}

<
<

ha<z<b ...()
a<y<b = -b<-y<-—-a ..(Q2)
From (1) and (2), a—b<r—y<b—a
= —(b—a)<z—y<b-—a
= lt—yl<b—a as b—a>0
{Property 5}

Wehave:<J_|_|_L>or<J_|_|_L>
a x y b a y x b

If two points lie in a particular interval [a, b] on the number
line then the distance between them is less than the length of the
interval.

5 la—bl=|(a—c)+(c—b)

<la—c|l+lc—b {Triangle inequality}

10

1

a a a
|m—a\<5 = —§<m—a<5 {as a > 0}

= a< <3a
a_, .8
2 2

a

= T > =

2
[(z +y) — (a+0b)]

=|(z —a)+ (y —b)

|z —al + |y — b]

e+e

=[x +y)—(a+b) <2

Consider the Archimedean Property with ¢ = ¢ and b =1

where € > 0.

There exists a natural number n such that

< {Triangle inequality}
<

1 1
ne>1 = e>— = —<c¢
n n

Ppis: if > —1 then (1+2)* > 1+nz forall n €zt
Proof: (by induction)
M Ifn=1 @@A+z)>1+1z

= l+zxz>1+=z

= Pj is true
(2) If Py is true, then (1 +2)* > 1+ kx, k€ Zt.
Now z>—-1 = 14+2>0
= (A+2)FQ+2)>Q+k)(142)
= A+2) > 14 (k4 1)a + ka?
= A+2)F > 14 (k+1)z, as ka?>0
Thus Py is true and Pp41 is true whenever Py is true

= P, is true. {Principle of Mathematical Induction}

Consider A =10, 1[, a subset of R,
Suppose « is the least element of A, 0 < o < 1.

2
2

a
= 0< 5 <a<l1
= % lies in A, but is smaller than «

We have a contradiction as o was the least element of A and so
A does not have a least element.

Suppose 7 + x is rational

= r+x:% where a, b€ Z, b#0

a . .
= r=— —r which €Q, a contradiction
= r+x is irrational.

Similarly suppose rz = 121’ c,de€Z, d#0

c . .
= x = — which € Q, a contradiction

= rx is irrational.

EXERCISE B.1

1

a y As T — 00, —x — —00
lim (—z) DNE.
Tr— 00
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3x + 2 — —1 below
3x + 2 — —1 above

b
4
d
xr
2 a y
y=3r+2
(-1.-1) !
As z — —17,
As  — —17T,
lim (3z+2)=-1
r——1
b f(z) =

22+ —2 _ (z+2)(x—1)

x4+ 2

T+ 2

fla) = r—1if zeR, = # -2
(@) = {undeﬁned if ©=-2

YA
fla) =
- 1 [
missi?lg point 71 z
(=2,-3)
A\

As x — —27, y — —3 below
As © — —2T, y — —3 above
2 -2

@?te-2 _
z——2 xT+2

a Ay
(3. 1)
y=2% 2<% y=sinz, t>7%
A\
T _
b As 1:—>§ , y — 1 below
lim f(z)=1
z—>17

2

T+
As x—>§ , y — 1 below

lim f(z)=1
z— 3
¢ Since lim f(z)= lim f(z)=1,
w—»%_ :v—»%"’
lim f(z) =1
2

2

a
< 71\
\J re1
b 1 As z — —oo, y— 1 below lim f(z) =1
Tr— —0o0
il As z — oo, y — 1 above lim f(z)=1
Tr— 00
il As x—>17, y— —o0 .
n } lim f(z) DNE.
As z — 17, y— o0 z—1
a AY
y:zQ, >3
2 (3,9) missing point
Y
b As x — 37, y — 9 below
As ¢ — 3T, y — 9above

¢ Yes the limit exists

lim f(z) =9 {as both LH and RH limits are 9}
z—3
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6 For x <0, y/z does not exist

lim  DNE.
xz—0~
So, although lim /z =0, lim+/z DNE.
z—0t x—0
7 a y
1 y=1,2>0
= =

i As  — 07, y— —1 below
lim f(z)=-1
z—0—

i As z— 01, y=1

lim f(z)=1
z—‘OJrf( )

ili Since the limits in i and ii are different, lim f(xz) DNE.
z—0

i As z—0", y—0 o lim f(x)=0
x—0—

i As z—0t, y—1 oo lim f(z)=1
z—07t

ili Since the limits in i and ii are different, lim f(z) DNE.
z—0

i As c—0", y—0 o lim f(x)=0
r—0—
i As z— 0", y—0 o lim f(z)=0
z—0t
ili lim f(z) =0
z—0

EXERCISE B.2 I

. x+1
1 a llm—
z—1 g2 —2x — 3
2
1

N|=

. x+1

lim R
z——1 2% —2x — 3

. z+T

lim ———
r——1 (M)(ZE — 3)

1

4

z2 +3z—4
m——— =
z—0 x—1

{a# -1}

. 22+ 3z —4

lim —

rz—1 x—1

. (z—T1)(z+4)
= lim ———=

lim {z #1}

<2

. 2—z2>0

\/Hexists.
Now lim Inz#0 but lim 2—2=0

r—2 T—27

lim cosf =1 but lim 6 =0
0—0— 0—0—

cos 0
DNE

{cosz # 0}
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3 422 — 5z +1
3 a2 lim o2 b lim = ot
z—oo T+ D z—oo T2 +z+1
541 4-24 5
= lim 5 = lim —
_0+1 ~4-0+40
140 T 14040
=1 =4
213 1
¢ lim g /EE d  lim —F%
z—00 x z—00 T2 +x+1
1 1
3 41
- % 2 ] 22 Tz
e\ :zhf;ol 1, 1
But as x — oo, +E+97
3 B 0+0
@+ = =00 T 14040
the limit DNE. =0
[ lim /22 +2 —2x
2
:lmlC/ﬁ+m_m> vezitetz
Too Va2l +z 4z
. m2+m—m2
= lim —————
=00 2 x4
= lim < {as = > 0}
T— 00 1
1+-+z
. 1
= lim
T— 00 1
1+2+1
_ 1
T141
1
2
5 If lim f(z) =1 < lim f(z) = lim!
< lim f(z) — imI=0
< lim (f(z)—1)=0
Tr—a
EXERCISE B.3 I
sinZ 6 . sin360
1 a lim b lim
00 0 0—0 0
0 .
= lim ( )sin9 = lim (Sm39> 3
6—0 6—0 30
=1x%x0 . sin 36
=3 lim
=0 30—0 \ 36

{as 6 — 0,
30 — 0 also}
=3x1
=3

4

. (% sin 7x
lim d 1
0—0 tan@ z—0 4x
. 0 sin7x\ -
= lim — = lim 1
6—0 sin6 z—0 Tx 4
cos 6
7 sin 7z
=+ X lim
= lim < )cos@ 7z—0 Tx
6—0 \'sin @ .
=1x1 =zx1
_ -z
= — 1
. in6
{Since lim =1,
—0 0
lim — =1}
6—0 sin 6
lim xcotx
x—0
. cos T
= lim z—
z—0 sinx
. T
= lim ( - )cosm
z—0 \sinx
=1x1
=1
. 2+
lim -
z—0 \ sin2x
x? x
= lim - + —
z—0 (sm 2x  sin 2x>
im 5 (nae) + (5]
= lim |— =
z—0 [ 2 \sin2x 2 \'sin 2z
=0x1+3x1
-1
-2
sinx sinx
lim = lim ( ) Nz
e—0t /T z—0t T
=1x0
=0
sinx
. T+sinzx . T
lim ———— = lim -
z—0 r — SInx x—0 - sinx
T
sinx
Butas * — 0, 1 — —1—-1=0
the limit DNE.
cosh —1 . (COSh—l) (Cosh+1)
im ———— = lim
h—0 h h—0 h cosh + 1
. cos2h —1
= lim ——m8M8 ——
h—0 h(cosh + 1)
—sin2h

= lim ——————
h—0 h(cosh + 1)

. sinh\ ? 1
lim —h(—) —
h cosh+1
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. 1—cosx . 1—cosx 1+ cosx
¢ lim ———— = lim 3
z—0 g2 z—0 x 1+cosz
1 sin? z
m ——
e—0 22(1 + cosx)

sinz\ 2 1
— lim 1( ) L
z—0 T 1+ cosx

=1x12x1

1
As —1< cos( 2) < 1, then

e rten(L) <

But lim (—z?) = llm( =0

x—0

x—0

1
lim 22 cos(—Q) =0 {Squeeze Theorem}
x
1
b As —1< sm( >< 1, then
x

1
fxgxsin(—) <z {if z> 0}
T

at
lim x sm(—) =0 {Squeeze Theorem}
x

z—0

However, if <0
. (1 At
—1<sinl—-) <1 = z<osin|—) < —=x
T T

and as lim (—z) = lim (z) =0,
z—0 z—0

1
lim xsin (—) =0 {Squeeze Theorem}
x

z—0

1
¢ As —1<sinz<1 and e® >0 forall z € R,

.HIH

N

e e ex
1 1
Butas * - 0, — —> 00 and e® — c©
T

1 1
lm (| —— | =1lm | — | =0
z—0 1 z—0\ 1
e” e”
(-%)
lim e\ ®/sinz =0 {Squeeze Theorem}
z—0

d Consider = > 0

Now 0 < |z| < 2z

0 - |z| - 2z
1+ 24 = 14 24 = 14 24
2z 0
As z— 0, —— - -=0
1+ 24 1

lim || =0

Toat .. (1) {Squeeze Theorem}
r—0+ x

Consider = < 0

Now 0 < |z| < —2z

0 o |z < —2z
14+24 " 1424 1424
But -, =2 o
ut, as ¢ — 07, —
1+ a4
lim o] =0 ...(2) {Squeeze Theorem}

z—0— 1+ 24

From (1) and (2), limo g(z) =0

EXERCISE C.1 I

1 a Let F(z) = f(x)g(x)
As f(z) and g(z) are defined at =z = a, F(a) = f(a)g(a)
is also defined at = = a.
Now lim F(z) = lim [f(a:)g(m)}

= g}lgnaf(g;) X hm g(z)
= f(a) x g(a)
= F(a)
f(z)g(x) is continuous at = = a.
b Let F(z) = f(z) + g(z)

As f(z) and g(z) are defined at = = a,
F(a) = f(a) £ g(a) is also defined at = = a.

Now a}lj»r}z F(x) = lim (f(m) + g(z))
= g}lg}lf(x) + lim g(x)
= f(a) £ g(a)
= F(a)

f(z) £ g(x) is continuous at = = a.
¢ Let F(z) = f@) here g(x) #0
g(z)
Now F(a) = @) where g(a) #0
g(a)

F(a) is defined.
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Now lim F(z) = lim &
T—a T—a g(IE)

lim f(z)

r—a

lim g(z)

_f@
g(a)
= F(a)

where g(a) # 0

f(x)

9(z)
d Let F(z) =cf(z)

F(a) = c f(a) isdefined as f(a) is defined and ¢ € R.

Now lim F(z) = lim ¢ f(x)
Tr—a r—a

is continuous at x* = a.

=c lim f(z)
=cf(a)
= F(a)
c f(z) is continuous at x = a.
e Let F(z) = [f(z)]", ncZ*
F(a) = [f(a)]™ is defined as f(a) is defined.
Now lim F(z) = lim [f(z)]"

o _ [zlig;f(w)r

= [f(a)]"
= F(a)
[f(z)]™ is continuous at = = a.

2 a | f has an essential discontinuity at = = 6.
ii f has a removable discontinuity at = = 5.
b fis continuouson {z |z €R, x #5or6}

y=2x

A

r=4
b i f iscontinuous at x = —2.

ii f has a ‘jump’ discontinuity at = = 0.

iii f has a removable discontinuity at = = 3.

iv f hasa ‘break’ discontinuity at * = 4 due to the vertical
asymptote at x = 4.

Ly
12 Je
9 (3:9)
6
(3:5)
3
y =3z
T3 31 %
]

f () is continuous for all = € R, = # 3.
At x = 3 there is a removable discontinuity.
It could be removed by defining f(z) as:

2
x“, x >3
f(z) =
3z, =<3
Ay
10
-2 V=5 /4
h 2 4 6 8 [z
=5
— 22101
—10 Yy=x 102 47
(3, —14)
=15
\ 4

f(z) is continuous for all z € R, x # 3.
At x = 3 we have a ‘jump’ discontinuity which is essential.

. 3 —1

lim

z—1 x — 1

D@+t
= lim

r—1 M
=1+4+1+1
=3

let k=3

sin 3z

lim
z—0 xT

sin 3x
= lim ( )3
z—0 3x

sin 3x
=3 x lim ( )
3xz—0 3x

=3x1 {as = — 0, 3z — 0}
=3

let k=3
f2)=2=14

let k=4

1 L . .
y = — has an essential discontinuity at = = 0 which
T

cannot be removed
no value for k£ can be found.

y = kx represents the infinite number of lines passing
through O(0, 0).
 keR
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fIf k+2>0, If k+2<0, 8 a :elnm

x
then k > —2, then k < —2, 1 1
and f(x) has graph: and f(x) has graph: oooam = ()
Ay by I lie
= z" =e"
y=x+k (2, ~k—-2) i
-/ -~ 1 1
y=k+2 (2,k+2) y=—k—2 = gz :elnz"
< > < - 1 1
h T h v b Froma, z™ = f(g(n)) where f(n)=e", g(n) =Inz™
y=z+k F 7 I _ .
' R rom7¢, lim f(g(n))=Ff{ lim g(n)
f(z) is continuous -. f(=) is discontinuous . % B
forall = € R at z=2 o lim oz = f(Ind)
So, if k> —2, k€ R, f(x) is continuous = f(0)
and if k< —2, k€ R, f(z) is continuous for all = # 2. =0
=1

EXERCISE C.2 I
2
a rn,=a+ £, aeQ
n

1 a f(x) is continuous forall z € R and .. on [0, 2].
Since a € Q, z, ¢ Q forall n € Z+ f(0)=—3 and f(2)=7
_ 3 , Thus, with k =0, £(0) < k < f(2)
nh_,moo g(@n) =0 {Dirichlet function} Hence, by the IVT, there exists ¢ € [0, 2] such that
But g(a) =1 since a € Q fle)=0

nlimoo 9(@n) # g(a) = f(x) has a zero on [0, 2].

cL b 'y
But lim z, =a
n— oo (3’ 4)

g(z) is discontinuous at = = a.

b If z,, is the decimal expansion of a to n decimal places then -

A J

Zn €Q 1 3
. _ .. . (1, —4) —
lim g(zn) =1 {Dirichlet function} \
n—oo
But g(a) =0 since a ¢ Q A\ v=2
lim g(zn) # g(a) f(z) has an essential discontinuity at « = 2
nmee the IVT will not apply.
Also nlimm In=a Clearly for [1, 2[, f(z) <O and for ]2, 3], f(z) >0
g(z) is discontinuous at = = a. f(x) is never zero on_[1, 3].
¢ From a and b, the Dirichlet function is nowhere continuous. 2 f(z) = x® — 922 + 24z — 10 has graph:
¥ 4

(2,10) ' (5,10) :

a If g(x) is continuous at = = a, then

v

O&in}l g(z) =gla) =1 ... (1) H (1,6) | (4.6)
If f(z) is continuous at g(a) then - : -
: vy
Wlm F(g(@) = Sgl@) = FO :
girmate f/(z) = 32% — 18z + 24 o (2, 10) is a local maximum
But g(z) —g(a) when = —a = 3(z? — 6z + 8) (4, 6) is a local minimum.
lim f(g(z)) = £(1) =3z —2)(z —4)
Tr—a
b From a, if lim g(x) exists then, a On [L,5, m=10 and zm =2o0r5
r—a b On [1,5], m=6 and mym =1or4

lim f(9(x)) = /(1) o
T—a 3 As f(a) and f(b) have opposite signs, then f(a) < f(b) or
= f( lim g(m)) {from (1)} f(b) < f(a)
) e By the IVT, there exists ¢ € [a, b] such that
I Jim g(z) exists then fla) < f(©) = 0< f(b) or f(b) < f(e) =0 < f(a)
there exists a zero ¢ € [a, ]

n

lim f(g(z)) = f() = f (Jimoog(“’”))

= there exists at least one zero of f(x).
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T
4 a Let f(z)=sinz+rz—1, r>0 for 1:6}0,5[.

2
T
Since f(0) and f <5> are opposite in sign, by the IVT there

Now f(0)=—1<0 and f<§)=7~3>o

™

exists ¢ € [0, 5] such that f(c) =0

When r =1,

at A, sihz=1—=x

f(z)=0
x 0511

1

5 If =zl
alf flx)== +1+sin2x+(r+1)2

where sin?(z) ~ 0.7081 for = = %1
and (r+1)2>0 for r€R
1
0<
1+sin?z+ (r+1
for x =+1 and r € R.

B < 0.5854

So, for r € R,

FO) =)+ !

1+sin?(1) + (r 4+ 1)2
1
+ —
1+ sin?(1) + (r +1)2
1< f(1) < 1.5854

and also

F-D = (D4

1

1+sin?(=1) + (r +1)2

1
+ 3 2

1+4sin“(—=1)+ (r+1)

1< f(~1) < —0.4146
Since f is continuous for all z, r € R, f is also continuous
on [—1,1] andsince f(—1) <0< f(1)

there exists an x € [—1, 1] such that f(z) = 0.

1
b If g(x) =razl” + = where r € R, r» > 0, there is a
T

discontinuity at = = 0.
f is not continuous on the interval [—1, 1], so the IVT
cannot be used to prove the existence of a zero.

EXERCISE D
1 If f(z)=cosz

cos(z + h) — cosz

, .
f(z) = lim
(z) = lim h
cosxcosh —sinxzsinh — cosx
= lim
h—0 h

. (COSh—l) . <sinh>
= lim cosz| —— ) —sinz
h—0 h h

f'(x) =cosz x 0 —sinz x 1

= —sinx

cosh —1
h

{ . sinh
lim
h—0 h
2 f(5) =0 is defined.

lim f(z)= lim (5—x)=0 and

=1 and Aim =0 {Example 6}}
—0

r—5" r—5"
lim z)= lim (x—5)=0

lim f(z) = 0= f(5)
z—5
Thus f(x) is continuous at = = 5.

r>5

Now f(w):{5fx, z<5
fl(z)=—1 and f|(z)=1
Hence f’ (5)=—1 and f (5) =1,
= f(=) is not differentiable at =z =5

x — b,

fL(5) # f1.(5)

T+ 2, x>0
3 fe) = {x2+3x, x <0
has an essential ‘jump’ discontinuity at = =0
f(z) is not continuous at = =0
= f(x) is not differentiable at « =0
Note: f (0) =0 and f’ (0)=2(0)+3 =3 and
F(0) # £2.(0)

2
—x“+5rxr+6, x>1
v 1@ = {
3z + 10, <1
a by 5 (1,13)
10/
(1,10)
y =3z + 10,
r<l1
< L
- y:7x2+3m+6,\7
rz>1
A\
b i f(1)=3

i (1) =-2(1)+5=3
¢ No, although f’ (1) = f/ (1), f(z) is not continuous at

z=1
5 a
y=1+sinz, >0
y=z*+az+1,
<0
X [ T F ¢
f(0)=1+sin0=1 is defined
lim f(z)= lim (z®24+2+1)=1
z—0— z—0~
lim f(z)= lim (1+sinz)=1
z—07t x—0~
lim f(z) = 1= f(0)
z—0

= f(x) is continuous at = =0
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Now f/(0)=2(0)+1=1 and f}(0)=cosO=1
fL0) =7 (0)=1

= f(x) is differentiable at = =0
b Ay

= cosz, T >
©0,1) y=cosz, x>0

-~ - >
y=21° <0

\J

As f(x) is discontinuous at x = 0, it is not differentiable
at z =0.

y=42?> -3, x>2

(2,13)

y=a3+22+1, <2

= >
/ )
A\

f(2) = 4(2)2 — 3 =13 is defined
lim f(z) =2 +2(2)+1=13
T—2"

lim f(z) =4(2)%*-3=13
r—2+
lirn2 f(z) =13=f(2)
= f(x) is continuous at = = 2
Now f'(2)=3(2)>+2=14 and
fi(2)=8(2) =16
FL(2) # f1(2)

= f(x) is not differentiable at « = 2

6 f(0)=ksin0=0
£(0) is defined.
Also, lim f(z) = lim (tanz) =tan0 =0
z—0— z—0—

and lim f(z) = lim (ksinz) =k(0) =0
z—0t z—0t

lim f(z) =0 = f(0)
= f(x) is continuous at x =0 forall k € R.
1
Now f’ (0) = sec?(0) = == 1 and
F4(0) = kcos(0) = k
PO =0 & k=1
f(x) is differentiable at z =0 < k=1

r<1

z>1

2
7o f(x){:x,er

f(1) =12 =1 is defined.

Also, lim f(z)= lim z2=1

z—1— rz—1"
and lim f(z)= lim (cx+d)=c+d
z—1t z—1t

lim f() = f(1) & ctd=1 .. (D)

Now f’ (1)=2(1)=2 and f\ (1) =c
f(1) exists & c=2

But from (1), ¢c+d=1 d=-1
c=2d=-1
sinfzx —1) +cz, x>1
b =
f(@) {xz—x—l—d, r <1

f(1) =sin0+ ¢ = ¢ is defined.
Also, lim f(z)= lim (22 —z+d)=d
z—1— ——1-

T

and lim f(z) = lim (sin(z —1)+czx)=c

r—1+ r—1+
lim fz) =f(1) & c=d .. ()
Now f (1)=2(1)—-1=1
and fﬁr(l) =cos(0)+c(l)=1+¢
f(1) exists & 1+c=1 < ¢=0
Thus, from (1), c=d =20

a f(0) =0 is defined.
For  #0, |f(z)| = |23sin (i)‘ < |m3|
< e[

and lim —}:53} = lim ‘z?" =0
z—0 x—0

= lin})f(:r) =0
= lim f(z) = £(0)

= f(z) is continuous at = =0

{Squeeze Theorem}

Consider >0

f'(z) = 32% sin (%) — x cos (%)

where
. 1 2 2 2
—1<sin|— | <1 = —-3z°<3z°sin| — ) <3z
T T
and
flgcos(—> <1 = 1227:):605(—) > —x
T T
1
= —x< —xzcos|— )<z
T
Thus,

2 2 1 1 2
—3x —x < 3x°sin| — ) —xcos|— ) <3z +=x
T T
or =322 —z < fl(x) <322 4=
But lim (=322 —2)=0= lim (322 + )
z—0+ z—0

lim f'(z)=0

. .. (1) {Squeeze Theorem}
x—0
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Consider =z <0
as 3z% > 0,

—32? < 322 sin (

]| =

andas —x >0,

< —weos ( )
Thus,

1 1 9
—322 +xz < 3z2 sin (—) — x Ccos (—) <3z —=x
T x
or —3z% + 2 < f(x) < 3z
But lim (=322 +2z)=0= lim (322 —2)

z—0— z—0—

lim f'(z)=0 .. (2) {Squeeze Theorem}

rz—0—

So, for x # 0, lim0 fl(z)=0
r—

i () oo (3) 220
z°sin(— ) —xcos(—), =

b f(z) = x x
0, r=0

8|~

¢ From (1) and (2) above,
lim f'(z) =0= f(0) and
z—0t
lim f'(x)=0=f(0)
z—0~"
lim f'(z) = £'(0)

= f’(z) is continuous for all =

EXERCISE E I
1 a As 2 —0, 1—cosz — 0 and z2 — 0
The limit has type %, so we can use 1’Hopital’s Rule.

1—cosx . sinxzx
—_— = hm

lim 5
x—0 x z—0 21
1, sinxm
:§hm
z—0 X
— 1
=3 x 1
1
-2

b Asz—0, e —1-2—1-1-0=0 and 22 >0
The limit has type g 9 "so we can use I’Hopital’s Rule.

11—z et -1
lim

lim =
z—0 x2 z—0 2
This limit also has type %, so we again use I’'Hopital’s Rule.
et —1—=a e”
lim = lim —
x—0 $2 z—0 2
=1
-2

¢ As z— 1, Ine—0 and x—1—0

The limit has type 9 'so we can use I’Hopital’s Rule.

. Inx .z 1
lim

z—1x—1 z—1 1

d As x — 0o, ¥ — 0

The limit has type %, so we can use I’Hopital’s Rule.

e’ e’
lim — = lim — which does not exist
r—oo T Tr— 00
.e”
lim — DNE
r—oo I

As £ — 0T, £ —0, Inz — —oc0

The limit has type 0 X oo, so we can use I’'Hopital’s Rule.

. . Inx
lim zlnz = lim —
z—0t z—0+ T
1
= lim
z—0+t —z—2
= lim (—=z
zHO+( )
=0

As z — 0, arctanxz — 0

The limit has type %,

1
) arctan x . 1122
lim —22% — jm [ 22 =1
z—0 T z—0 1

As £ —0, 224+ 2 — 0 and sin2z — 0

so we can use I’Hopital’s Rule.

The limit has type %, so we can use 1’Hopital’s Rule.
22+

im —
z—0 sin2z

2 + 1
1m
z—0 2cos2x

=3
As z — 0%, sinz — 0 and z — 0

The limit has type %, so we can use I’Hopital’s Rule.

sinx . cosT
lim = lim
z—0t x z—0+ _1
1.2
5T
= lim 2yzcosz
x—0
=2(0)(1)
=0
sinx sinx
Note:  lim = lim Vz < )
=0+ /T  x—0+ x
=0x1
=0

As x — 0, x+sinz — 0 and x —sinz — 0

The limit has type %, so we can use I’Hopital’s Rule.

. T + sinx
lim —— = lim

z—0 ¢ — sinx z—0 1 —cosx

1+ cosx

which DNE as 1+ cosz — 2 and 1 —cosz — 0
As £ — 0T, 22 -0 and Inz — —oo

The limit has type 0 X oo, so we can use I’'Hopital’s Rule.

. 9 Inx
lim z°lnz = lim —
z—0t r—0t+ X

1
xr
= lim ——3
z—0+ —2x—
= lim —%12
z—0+t
=0
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k As £ — 0, a® —b* — 0 and sinz — 0

The limit has type %, so we can use 1’Hopital’s Rule.

. a® —-0b* ~ a®lna—b%Inb
lim —— = lim ——M—
z—0 SInx x—0 CcCosT
B Ina—1Inb
B 1

ln(%) provided a > 0, b >0

As ¢ — Z7, tanx — oo and secx — 0o

2
The limit has type =2, so we can use I’Hopital’s Rule.
oo
i tanz R sec? z
lim = lim ——
T — secx m— secxtanw
z— 5 T— 5

. sec T
= lim

- tanx
r— =

2

. sec x tan
= lim — s

- sec” x
T— 5

{using I’Hopital’s Rule again}

tanx

= lim
T SecT
2

xr—

which is back to where we started.
So, I’Hopital’s Rule was no use here.

sin x
tanx cos . .
Note: = =sinz provided cosxz # 0
sec 1
cosx . ™
that is, = # —
2
. tanz i R
lim = lim sinz=1
T — secx ™
T— =5 T— =

2 2

As z — 0, %7arccosmme%7%70

that is, % —arccosz —z — 0 and z° — 0

The limit has type %, so we can use 1’Hopital’s Rule.

T
5 — arccosr — T

lim 2
x—0 $3
04 ————1
. vV 1—x2
= lim
x—0 3%2

1—+/1— 22

lim 1+4++/1— 22
=0 342, /1 — 22

1+4/1— 22

) 1—(1—22)
= lim
220 3221 /1 — 22(1 + /1 — 22)
_ 1
= lim
220 3./1—22(1 4 /1 — 22)
1

32

6

A

. (1 1 )
o lim [ —— —
z—0+t \x sinx

a As z— 0%, In(cosbz) — 0 and In(cos3z) — 0
The limit has type %, so we can use I’Hopital’s Rule.
—5sin bx

In(cos 5z)

lim ———0) = iy —COS5T
z—0+ In(cos3z) z_o+ —3sin3z

cos 3z
which is

i 5 (sin'c’m) (cos3x)
m =
z—o+ 3 \sin 3z cos bz
in5 3 3
— lim %(sm x)s(a: )%(cos a:)
z—0+ bz sin 3x cos bx

. sin bz . 3z 1
X lim ( ) X lim ( - ) X T
52—0+1 5x 3z—0+ \sin 3z

X1x1x1

otk

ol et

In(sin 2
M is not defined when sin3z < 0
In(sin 3z)

3x < 27

=

that is, when 7 <
= % <

and % lies in this interval

In(sin 2
i RGR22) e
= — In(sin 3z)
T

1 sinx — x

o
8|~
I

sinx rsinz
. sinxz — x
lim (——
z—0t T sine

The limit has type %, so we can use I’Hopital’s Rule.

cost — 1

. 1 1
.o lim (= — — = lim —M—
z—0+ \x  sinz z—0+ sinx + zcosx

The limit also has type %, so we again use 1’Hopital’s Rule.

. 1 1 . —sinz
. lim <—— - ): lim -
z—0+ \z sinz z—0+ cosx + [cosz + x(—sinz)]
—sinzx
z—0+t 2cosx — xsinx
0
T 2-0
=0
b 1 1 sin2z-—z
z sin2r  xsin2z
sin2x — x

. (1 1 )
lim [—— —
z—0+ \x  sin2x

The limit has type %, so we can use 1’Hopital’s Rule.

im —
z—0+ xsin2z

. 1 1 . 2cos2x — 1

lim (— — — ) = lim —
z—0+t \x  sin2z x—0+ sin2x + x(2 cos 2x)
2(1) -1

0+0

the limit DNE.
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9 1 sinx
¢ secx —tanx =

COS2 x Cosx

1 —sinzcosx

cos? z
1.
_ 1-— 3 sin 2z
cos?x
1-1@
lim (sec?z —tanz) = %
T

2

the limit DNE.

6 a Forall keZ', as # — oo, zF — 00 and e — oco.
The limit has type =, so we can use I’Hopital’s Rule.
o0
] mk ) kmk_l
lim — = lim
T— 00 em r—00 ex

And, by using I’Hopital’s Rule repeatedly

o k(k—1)zk—2
= hm _—
T— 00 et
o k(k—1)(k—2)zk—3
= lim
xr— 00 ew
k!0

lim
T— 00 eiE

=0 {k is fixed, e* — oo}
b The result in a implies that for large x, e® is greater than =¥
for any fixed k € Z7.

T

e® increases more rapidly than any fixed positive power
of x.

1
7 Consider lim n—:, kezt

r—oo T

As © — 00, Inz — oo and zF — oo

The limit has type 22, so we can use I’'Hopital’s Rule.

1
. Inz . z
lim —— = lim
T— 00 xk T— 00 ka}kil
1
= lim —

=0

for large x, ¥ is very much greater than In

= Inz increases more slowly than any fixed power of x.

1
8 a As x — oo, ln<1+—>aln1:O
x

1
thatis, lim In (1 + —) =0
T

T—00

1
Consider zIn (1 + —)
T

1
As © — oo, ln(1+—)—>0
T

The limit has type 0 X oo, so we can use I’Hopital’s Rule.

. In(1+2z7h
= lim I
T— 00 xX
_3372
= lim Lte”?
T—00 7172
. 1
= lim
z—oo 1 +.T_1
1
=1 {z71 == =0}
x
b 1o m(es) ey
x 1
- <1+l) _ wln(1+;)
€T

Il
®
~
1=
g8
8
5
=
+
8]
SN—
~—

Il
o
-
-~
=3
o
=]
o
-

a

=6

= lim 1+

@ T
— —00 =
@ a

e {from b}

a

Il
o

Inx . sinz _ (elnz)sinz
— esmzlnw

Inz

=elinal™t (1)

. Inxz
Now consider ————— as z — 01
[sinz]—1

As x — 0T, Inz — —oco and [sinz]~! — co

The limit has type 22, so we can use I’'Hopital’s Rule.

1

. Inz . P
lim —— = lim —————
2—0+ [sinz]~1 4o+ —[sinz] 2 cosz

—[sinx]?

= lim
z—0t T CosxT
The limit has type %, so we can use 1’Hopital’s Rule.
. Inx . —2sinxz cosx
x—0+ [sinz]~ z—0+ cosx + z(—sinx)

—2(00(1)
1-0
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In x

Hence, lim zsinz = lim elsinzl "
z—0+ z—0T1
=1
1 1 Inz
10 2= (elnz)z —e ®
. nx
Consider lim —.
r—oo &I
As x — oo, Inx — 00
The limit has type ==, so we can use 1’Hopital’s Rule
1
. Inx .
lim — = lim — =0
r—oo I xT— 00 1
Inx
lime® =e'=1

T — 00
1

lim z* =1
Tr— 00

EXERCISE F I

1 a f(z)=32>+522—-43x+35 on [— 523]
f(=5)=f(23)=0
f'(z) =922 + 100 — 43 forall z € R
: f (z) is continuous and differentiable for all
€[5, 23] and f(-5) = f(23) =0
= Rolle’s Theorem applies

—5+ 2103
9

both of which lie in ]—5, 2% ]

b f(z)=|z|—5 on [-5,5].
y f(z) is not differentiable
at z = 0.

{If >0, fi(x)=1

flle)=0 & c=

4
|y

Thus f(x) is not differentiable for all x € [—5, 5]
Rolle’s Theorem does not apply.

cf(a:):2fm1 on [7 7).

+1

f(x) is continuous for all z € R, = # —1

is continuous on [—— 7]
1
'(r) = ———— exists forall =z € R, -1
f(z) @r1? exists for all = z #
is differentiable on [f— 7]

f(=3)=0 and f(T)=1L#0
Rolle’s Theorem does not apply.

—2z -5, x< -1
= ’ on [-21 2
f@) {x2_47 ooy on (232

If 2<0, f'(z)=-

by

A J

flx)=2%—4, -1<2<2

Y

-2, z<-1
, - 5
f(z)_{2m, x> —1

P =) = -
Fen=-
f(flé) = f(2) =0 and f(z) is continuous and
differentiable on [72%, 2.
Rolle’s Theorem applies and f'(c) =0 < c=0
which lies in ]—2%, 2[.

f(@) = (2 = D)(@ — 2)(z — 4)(z — 5)

has zeros: 1, 2, 4, and 5

As f(z) is a real polynomial, continuous and
differentiable for all = € R, by Rolle’s Theorem, there
exist zeros of f’(z) in the intervals |1, 2[ and |2, 4[
and 4, 5.

So at least 3 real zeros exist for f/(z).

f(z) has sign diagram and graph:

NN

T

We see that there are 3 turning points
there are exactly 3 real distinct zeros of f(z).

f@) = (z = 1)*(® — 9)(x - 2)

= (z+3)(z—1)*(z - 2)(z - 3)
which has zeros: —3, 1, 2, and 3.
As f(z) is a polynomial, continuous and differentiable
for all = € R, by Rolle’s Theorem, there exist zeros of
f'(x) in the intervals ]—3, 1[ and |1, 2[ and |2, 3[.
So at least 3 zeros exist for f/(z).

f(x) has sign diagram and graph:

[
/3 1 23 =z

As y = f(x) has 4 turning points, f’(z) has 4 distinct
real zeros, 3 guaranteed by Rolle’s Theorem and = = 1.
f(@) = (¢ —1)*(2* + 9)(z — 2)

has two real zeros: 1 and 2.

As f(x) is a polynomial, continuous and differentiable
for all x € R, by Rolle’s Theorem, there exists a zero
of f(x) in 1, 2[.

So at least one zero exists for f/(x).
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il f(x) has sign diagram and graph:

f'(x) has exactly 2 real distinct zeros, the one
guaranteed by Rolle’s Theorem and the one at

=1
3 a f(x) = 23 is continuous on [—2, 2] and differentiable on
1-2, 2[.
Thus, by the MVT, there exists ¢ in [—2, 2] such that
f@) = f(=2)=f(0)(2--2)
= 8—(-8)=f(c) x4
= fl(c)=4
As f'(z) =322, fl(c)=4 & 3c%=
& c= :I:%

b Ly f@)=vz=2is
continuous on [3, 6]
and differentiable on

(6.2) o 13, 6].
3. 1)/‘
h 2 T
A\

by the MVT, there exists ¢ on [3, 6] such that
f(6) = f(3) = f'(c)(6 - 3)
2-1=f"(c)x3
fllo =3

=

1

c f(z):x—&-i has f’(m):l—?

f(zx) is continuous and differentiable for all = € R,
z#0

f(z) is continuous on [1, 3] and differentiable on ]1, 3[
{as 0 ¢ these intervals}

by the MVT, there exists ¢ € [1, 3] such that

f3) = F) = F(B-1)

= 3+ -2=2f(c)

! _ 2
= fllo)=3%
1 1
and 1-==2 & = =1
2 3 2 3
& c=4+V3
& c=+3 a5 ¢>0
1
L a = 4 JE—
f@=VE o F@ =5

f(x) is continuous for all > 0 and f’(x) exists for all
z>0

Thus, on [49, 51] f(x) is continuous and differentiable.
Hence, by the MVT, there exists ¢ € [49, 51] such that

VBT — V49 = f/(c)(51 — 49)

1
= 51 —-7T=2x
2 /c
1
= V5l —-T=—
Ve
b
AY
* 1
fla)=-"L (. —)
Va Ve
- -
1
(49.7) (64.3)
b A ¢ 64
A\
From th h 1 ! 1
¢ From the grap §<%<7
1 1
8<\/51—7<7
EXERCISE G.1 e
1
Ay by
. y = sin(z)
1 y = sin(z) 14
El el
7z 7z
ToF 5 ¥ o« 7 F 5 ¥ a7
A\ A
Li= - xZ 1
Vol U4—§(2(ﬁ)+2(1))
_ (2 "
_2\/§< 2) =2(V2+2)
:ﬁ(\@)
4—1 3
2 a Ar = —— = —
n n

z; = xo + iAx

(3
xi:1+z<—>
n

where n=1,2,3, ... n

b mi_f(xi—l)_f<1+w>

n

L 6E-1)

Slw

Sl
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=15-
3t 61
mz*f(wi):f(1+—z)f2+—Z
n n
3 n
= U‘n:_ZMi
ni=
3|& 6
=— 224——21]
n li=1 ni=1
3 6 1
= — 2n+—nn+ ):|
n n 2
1
:6+9(1+—>
n
9
— 154 =
n
9 9
¢ Fromb, 15— = < A< 154+—=, n€ Zt andas n — oo,
n n
9 o
n
A =15 units?2  {Squeeze Theorem}

a f(x) =22 on|l,2].
2—-1 1
Ar = —— = — and
n n

1
;=141 (;) for 1 =1,2,3,4,..,n

b m; = f(zi—1) = (1+i;1>2

1 n
Ly =— m;
ni=1
12 2(i — 1 i—1)2
——Z[H-( ) ( ;]
n - n n
1 2 (n—1)n 1 (n—1)n(2n—1
L[, 2(-bn 1 (- Dn@n-))
n n 2 n 6
1 n 1 1
Afrerere30-H) ()
n 6 n n
1, 1 1
ki) ()
n n n
i 2
Mi:f(:ri):(1+—)
n
12 2 42
n; n  n?
1 2 n(n+1) 1 n(n+1)(2n+1)
= — n_l,-_ -
n n 2 n2 6
1 n 1 1
:—{n-l—n-&-l-i——(l-&-—) (2-&-—)}
n 6 n n
1 1 1
ki) (o)
n n n
¢ But Ln < A< Up where lim L, = lim U, =
n— oo n—oo
A= % units>  {Squeeze Theorem}

EXERCISE G.2 "

6 3 6
1 a i / f(m)dw:/ f(:v)der/ f(z)dx
1 1 3

=2+-2

=0
7 2 7
ii / f(m)dw:/ f(:v)der/ f(z)dz
5 5 2
5 7
:i/ﬂ@W+/fmm
2 2

iv ff flx)de =0

5 2
v /f(x)dmf/ f(z)dz
3 1
5 3
—/f@wléﬂﬁg
2
3 3
[roafo
1

I
l\N\]
=
&

Qu
8
|
o\@
=
&

s}

8

=1 (-2)
_ ol
_25

b Ay

“ 1 2 3\4 5,6 7 ;
A\
3z, 0<x<1 4
2 f(z)=1<X 4, r=1

4—2x, 1<xz<3

A 4
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3 1 3
a / f(z)dx / f(z)dx + / f(z)dz
0 0 1

= +0

/ |f(z \dx—/ fx)+2/ f(z)da
1><3 1x2
. +2(2 )

:3%
c b
3 a / f(a:)da:—l—/ f(z)dx
= lim C_aZf(x, + lim [%i f(ztz):l
n—oo L n—oo i=1
_ (c—an _ b—cX _
= )+ == zf(wz)
— lim _::Lif__f}ﬁéf@%
= lim _“f)f(xi)

n— oo n

[ e

b / [f(z) + 9(z)] dx

lim |: i Sl +g(acl)):|

n—o0o
=1

b—
flzi) + 11m —Zg x;)
n

= lim ——
n— oo

/f dx+/ g9(x) da

EXERCISE H I

n

x
1 a F(z) :/ sin*tde where f(t) = sin®t which is
1

continuous for all ¢t € R
F'(z) = f(z) =sin*z  {FTOC}

“ 1 1
b F(x) :/ —————dx where f(l) = ————% is
, (B+2)15 (t2 +2)15

continuous for all ¢t € R
1

Fe) = wros

{FTOC}

4
2
¢ F(z) = / et dt where f(t) = et° is continuous for
x

all z € R

x
Now F'(z) = —/ e’ dt
4

= F'(z) = —f(x) {FTOC}

2

= F'(z) = —€”
2

x
d F(x) :/ St dt where f(t) = eS™t s continuous
-1

forall z € R
2

d o
Fl(z) = — St gt
d
T \J
u
— i esint dt d_u
du 1 dx

— esin u (2%)

{u=2%

— 22 esin(:cZ)

1
f(z) = — has a discontinuityat 2 =0 and 0 € |1, 2, the
x

range of integration.
2

1
the FTOC does not apply and / — dx is meaningless.
T
-1

1
a f(t)= " is discontinuous at ¢t =0

d ‘1 .
— —dt | cannot be found if 0 € |—1, z[.
dx qt

d 1
b However, if x <0, — —dt | can be determined
- dz ,t

using the FTOC.

is continuous on R.

a f(t) =

u
t
—dt where u = 2z
/1 1+t

= x2 {FTOC}
1+ ud
4
- {u =2z}

- \/1+ 1624

b f(t)= sin(et) is continuous for all z € R.

/ sin(e?) dt
d c
— / sin(e?) dt +/ sin(e?) dt
T dzx -
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i ( sm(et) dt) /z sin(ef)dt  {u = 2}
( sin(e > Z—Z — sin(e®)

= sin(e*) x 2z — sin(e”)

I&&

{FTOC}

{FTOC again}

= 2z sin(e” ) — sin(e®)

c f(t)= rE) is continuous for all ¢ € R.

sin 1
4 L w
z</z3 1+¢2
d sin 1 c 1
= — dt+/ dt)
d </C 14142 L3 1+ 12
d R | v
= — —dt — —dt
dz \ J, 1412 L 1412

where u = sinz and v = z°

u

8

d | du d vl dv
= — —dt | — — — ——dt | —
du . 1+1t2 dr dv . 1+ t2 dx

1 1

_ o 2

_—1+u2 cosx 1+U23$

_ cosw 322
1+sin2z 1426

10
5 / |z| dz
-3
0 10
:/ (—x)da:—l—/ zdx
-3 0

2 —3 2 0
=0-(32)+50-0

= 54% or use sum of shaded regions.

sinx, Oéxé%
2z, Z<r<3
f(z) = 2=

1
-, 3<x<b
T

AY

6

4

2

. -
Y

5 z
/ f(z)de = [— cosz]o2 + [:7:2]31 + [ln\x\]z
0 2

—0—(-1)4+9— % +In5—1In3

7 a The average value of f on [2, 5]

5

1
= — z 3 dx
5-2 ),
;[x_2 ’
=3
-2 |,
_1 1,1
=3 (% +%)
-7
200
b Ay (5, %)

(_27 4) !
\/(1 )

-2 1 5

B3 J

The average value of f on [—2, 5]

1 5

5
:%( fx)d:c—‘r/ f(ac)dm)
1
x3 215
:% |:? +[e]1
=%(%—78+e —el)
:%( 345 —e)

8 F(z) = / cos(e z>1
F'(z) = cos(e® ), z>1
F'(0) = cos(e?)

=cosl

‘F<lwﬂ):m(w®>

- bl
7008(4)
_ 1

V2

= - sin(ewz) e 2z

{FTOC}

d F'(x)
= 2z sin(ez2)
e F'"(0)=0
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9 g(m):/ f@t)dt, = €0, 4].
0

1
o(1) = / 1) dt b
0 3
() :/ £ty d
2 0

_ 1+5
=2 :( + )x2—|—%7r(1)2
{area of trapezium} 2

6

=6+ %
< g d 40
d / () dt i f3)
f(x) {FTOC}
g(1)=f1)=3
e g'(x)=f"(x), .. ¢"3)=f'(3)=0
{tangent at (3, 1) is horizontal}
9(z)
10 a F(m):/ ft—2)dt
1

d g(x)
F'(z) = - (/ ft—2) dt)
1
= i<\/uf'(152)dt> where u = g(z)
dx
o / )

= f u—2
= flg(z) - 2)9 (x)
F'(3) = f(9(3) —2) x g'(3)
=f(4-2)x5
=5f(2)
= -5
b Assumptions:

{Chain rule}

e f is continuous for all = > 1.
e g is continuous and differentiable for all = > 1.

EXERCISE 1.1 I
xT xT

513211 20 o

x 1

R - v R

> T <1
= 0< ——dx < —dx
/1 225 + 322 + 1 /1 x4

o0
1
where - dx converges
x
1

“ 1
{ / — dx converges for all p > 1}
1

a d
RN ——
225 +3x2 4+ 1

forall z > 1

forall x > 1

o0
by the Comparison Test /
1

converges.

2 —1 2 1
b Forall z>2, —— < —=—+
ViT+1  zr  alb
2
-1 1
0<m7<? {z > 2}
\/:B7+1 L
o0
0</ ——dzx < ——dz
1 \/m7+1 xl5

= dx converges

~ 1
{ / — dx converges for p > 1}
1 7

dx converges

where /
1

< 221

— Comparison Test

/1 i { }
dx converges

o221
= -
5 V41

2 z? —1
———dx is a positive constant

1

X
3

sinx

2 Forall z>1, 0<
23

o0 001
Oé/ d$</ —de
1 1 ¥

o0
1
where - dx converges
T
1

~ 1
{ / — dx converges for p > 1}
1 7

dx converges forall = > 1

sinz

3

sinx

oo
I
{Comparison Test}

oo .
N sin
22+1 22+1 1 1

0< < =—+—
24 +1 24 2 74

a2 +1 <1 ~1
0< dr < —dz + — dzx
1 x4 41 1 x2 1 x4
~ 1 ~ 1
where / —2dac and / —4dw converge
T T
1 1
1
{ / — dz converges for p > 1}
1 2P
oo9v2+1
=
L x4+ 1

{Comparison Test}
b For z >

dx converges

dx converges

2

1,:022:3 —x° < —
<

=
:> —.’1)2 e—(l)

[

2
0<e™ <e™® forall z€R, z>1

o0 5 o0
Oé/ e ® dxé/
1 -1

e Tdx
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0o b
Now e Tdxr = lim e Tdx
1 b—oo 1

. _ b
lim |—e I]
b—oo 1

—€7b 4 671)

I
o
g

-

<2 .
= e~ ¥ dx converges {Comparison Test}
1

e} 5 1 R [e%S) )
But / e ® dm:/ e " dm+/ e ¥ dx
0 0 1

—_—— N——
a positive convergent
constant

oo
— zz
e dx converges
0

Inx 1
—dr= [ [lnz]— dz
x T

o b
Inx . Inx
—— dz = lim —dz
1 x b— oo 1 x

. |:[lnm]2:| b
= lim |[|——
b—oo 2 1

=1 Inb)2 —
Jim, (30m0)

“Inzx
/ —— dx is divergent.
1 T

) which DNE

For =z > 1,

Inx

Inzx <z

x

0< — < —
e’ et

oo oo
Inx T
0< —dzr < — dx
1€ 1 €

/mefm dx =

oo
/ —dx—
1

s v=2x

v =1,

—zre * — /fefz dx

—ze T4+ —e T +ec
—(z4+1)e " +c

hm/ —dm
b—oo

lim [—(m + 1)673:]?

b—oo

—(b
— lim (# + E>
b— o0 e e

1 2
0</ L
1 et e

il
;»/ lne
1 €

Since —1 < cosx
z € R,

|
o\
3
mHl’_‘
u
8
IN
o\_.
3
Q
alo
8| ®
8

is convergent.

<1 forall z € R, and e* > 0 for all

0o 1 b
But / — dx lim (/ e * dac)
0 e b—oo 0

Il
=
=
|
)

=1

o0
from (1) 71</ 8% gz <1
0 €

dzr is

o0
cosx
= / =
0 e
/oo dxr
a "
2 2
. T +a

convergent.

o
‘&%(/ﬂ@da’)



164 WORKED SOLUTIONS

<1 /1
b — sin (—) dx
1 x2 x

b
= lim f/ sin(z 1) (—272) da

b— oo

b
. . du
= lim | — sinu — dx
b— o0 1 dx
1
T
= lim | — sin u du
b—oo -

= lim [cos u]fr

b— oo
— tim (cos () — cos(m))
7bi'n;o cos<b> — cos(m
—1-(-1)
=2
dx
6 -
et 4 e~ %
1 .
:/ dx {letting u = e*}
1
1 1
:/— — du {since z =Inu, d_x:l}
1\ u du  u
(u-i—Z)

! d
= —— du
14 u2

= arctanu + ¢

= arctan(e”) + ¢

it dx . b dx
I —— lim I —
a et e~ % b—oo o et e %

blirgo [arctan(ez)] Z

= lim (arctan(e’) — arctan(e®))
b—oo

= § — arctan(e®)

S A S S
/190\/90—%‘””

/00 oo u=x+3
= —da:—/ du du
L Ve 4 5:1

2=

2

y
1
Y="S5 T~ 11
/ x4 + 62 + 10

- 1
Area = —— dx
/O z2 4 6z + 10

o 1
= ——— dzx
/0 (z+3)2+1
b
= lim — dx where v =x+ 3
b— o0 (/0\ 1+ u2 >
b+3 1
= lim —— du
b—oo 3 14 u?

When z=0, u=3
When z =06, u=b+3
du
dz
b
= lim [arctanu] 3
b—oo 3

= lim (arctan(b+ 3) — arctan 3)
— 00

= % — arctan 3

“Inz
Consider / — dx for p< 1.
axP
e

oo
1
From 3 ¢, when p =1, / =z dx is divergent
e T
1

“Inz “Inz “Inz
Now —dx = — dx + — dx
1z 1 e Z

“ Inz
/ — dx is divergent
x
€

For p <1, we use Integration by Parts with

u =P, v=Inzx
zl=P , 1

u= , v ==
1—p x

Il
—
I ‘
b
N 7N
HH
N
5
8
|
= \
&\
]
U
s
"

“Inz
/ —— dzx is divergent
T
e
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0o b
10 a If n=0, e Pdr = lim e Tdr
0 b= \ Jo

= lim —efz]b
b—oo 0
1
= 1li —— — (-1
bin;o ( eb ( ))
=1-0
=1

oo
If n =1, we need to find / ze * dx
0

Using Integration by Parts with ' = e~ 7, v =

— ’
u=—e* 2 =1

/xefz dex = —xe™ * — / —e T dx

=-—ze "+ (e ) +e

oo b
ze Pdr = lim ze P dr
0 b— oo 0

If o =e"%, v =z?

u=—e% o =2

/acze*“C de = —z%e™ % — / —2ze” * dx
=227 % + 2/936_1 dx

= 2% T4 2(—eF(x+1))+d
=—e®(z?4+20+2)+d

b
/oo 22e % dr — lim [M]
0

b—oo et 0
— (b2 4+2b+2
~ lm (% . (_2))
b—oo e
=2

oo
If n =23, we need to find / z%e™% dz
0

If o =e"%, v=a>
u

I
|
®
|
8
c\
w
8
[V

—
8
w
4]
&
IS9
s

=z — / —3z%e* dx

= 2% £ 3(—e (2?4 2z +2)) +e
=—e (x> +322+62+6)+e

o0
/ z3e % da
0

= lim [_(m3+3x2+6l’+6) ’

b—oo et 0
(13 2
i < (b +3bb+6b+6) _(_6)>
b— oo e
=6

(e o)
20e %dz =1 =0!

(e o)
zte ™ ®dz=1=1

(e o)
z2e % dx =2 =2l

(e o)
z2e % dz = 6 = 3|

— o — —

o0
So, we predict / z"e Fdr=n! forall n€Z, n>0
0

oo
¢ P, is: / z"e Fdxr=mn! forall n >0, n€Z
0

(1) Py was proved in a.
oo
(2) Assuming the truth of Py, / zFe ™ dox = k!
0

Now

(oo}
/ zFtle= dy
0
b
= lim / gFtle= dg
b—oo
0
u =e” %, v=ux
u=—e"% o =(k+1)zk
b
_ —x, k+1]° —x k
= lim [—e x ] — | —e F(k+ 1)z dx
b—oo 0 0

_pk+1 b
— lim ( - 7(0)+(k+1)/ ezmkdm>
b—oo e 0

= (k+ 1)k!

=(k+1)!

Thus Py is true and P 1 is true whenever Py, is true.
{POMI}

k+1

= P, is true

EXERCISE 1.2

RO | > 1
1 a dmzz -
0 x+1 =0 14+ 1

2 —2z

e
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For >0, —2z <0 and e*” >0 = fl(x) <0
f(z) is decreasing for = > 0.

b U:;f(i):;)(57

L= fli+1)=> e G+
i=0

32

i=0
> 2 ° 2 i o
c Ze*(ﬂl) </ e T dr < Zeﬂ
i=0 0 i=0
1
3 a f(a:):—p:—an
2
fl)=22"%= =
T

f'(z) >0 forall z >0

f(z) is increasing for all = > 0

> 1
= , L=
DRRTEE

-1 1 o -1
— < —dx < —
i2 [ x2 x Z (Z+ 1)2

=1

vl

-1

-3
d

2
i=1 ¢

e

=1

EXERCISE J.1
1

e As n%oo,n+n3~>oo
n+n

1
n +n3

1 a ap=
— 0
lim anp =0

n—oo

b ap =In(l+n)—In(n)
(2
:1n(1+%>

As n— o0, ap, — Inl

lim a, =0
n—oo

3275 37§
¢ an— n n__ -

5n2 +2n —6

lim an, = %
n—oo

n(n + 2) n3
n+l n2+1
(n2 +2n)(n2+1) —nd(n+1)
(n+1)(n2+1)
ot 203 4 n2 4 2n —nt —nd
- n3+nZ24+n+1
n3+n2+2n
P
1+2+5

d a, =

1 1 1
I+ otz tas

1 2
As n—-00, ——0, ——0, ——0, ——0
n n2 n2 n3

lim a, =1

¢ an=vanti-vn
- o (YAFlevm
- (i) (V)
_ n+l—n
T Vntitvn
1
T Vntltn

As /n— oo, V/n+1— oo

lim a, =0
n—oo

4
(2n—3>4 -2
foan = - n

-3 7
As n—o00, — — 0, and — — 0
n n

4

. _(2\* _ 16
lim an, = (3) 31
n—oo

n! 1
n+3)! (n+3)(n+2)(n+tl)
As n—oo, (n+3)(n+2)(n+1) - o

anp — 0

a a, =

= {an} converges to 0.
1

b ap = ————
V/n2+1—n
7 1 Vn24+1+n
VnZ+1—n vVnZ2+14+n
n2+1+4+n
anp = ——————
n2 +1—n?

=+/n2+1+n
and as n — oo, Vn?+1— oo
{an} is divergent.

1
1 N —
—1
C ap = v = —\/ﬁ {dividing each term by \/n}
Vrn+1 1
14+ —
vn
1
As n— oo, — —0
vn
{an} converges to 1.
2
cos?n
d a, = on
2
1
Now 0 < cs <—, nezt
2n 2n
As n— o0, — —0
2’)’1

|an| is convergent to 0 {Squeeze Theorem}

{an} converges to 0.
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Now 0 < |an| <

sin | — < -
n n

{sinf < 0, for 0 close to 0}

But

0< ‘anl <

S

1
As n— o0, ——0
n

|an| is convergent to 0 {Squeeze Theorem}
{an} is convergent to 0.

Y/2n5 —n2 +4
n2 41
s/2n® —n2 +4

(n?2+1)3

3 on® —n?+4
N nb +3nt +3n2 +1
2 1 4
n T nt e

3 3 1
Ittt
As n — 00, an — W:O

{an} is convergent to 0.

1 2 3 n
an—m‘i‘ﬁ"rm-l-...."rﬁ
_1+2+3+....—|—7’L
= —
n(n+1)
2 n o n(n+1)
) D i= 2
i=1
7l(n+1)
=1 —
1
_1
4(+2)
1 1
As n—o0o0, ——0 Sooan — 3
n

So, {an} converges to 0.

a As n>0, n+1>n
1 1
= —
n+1 n
1 1
= < —< —
n+1 n
1 n 1\"
- o<(—) <(—)
n+1 n
(1) <=
= 0<(—— —
n—+1 nm
1

1
b Asn>0 24+—>2
n

1 n
(2+—) >2" forall neZt
n

But {2} diverges

n—oo

1 n
lim (2 + —) does not exist.
n

5 Since lim an = a and lim b, = b, for given ¢ > 0,

there exists N such that |an, —a| < % and |b, —b| < % for
all neZt.
But  [(an +bn) — (a +b)|

= |(an —a) + (bn — b)]|

< lan — al + [bn — 8

e €

< 3 + 3
Thus |(an +bn) — (a+b)] <e forall n> N

lim (an +bn)=a+b

n—oo
s ‘3n+5 3| |21n+35—2In+ 12
Tm—4 7| 7(Tn — 4)
| a7
| 7(Tn —4)
- 49
7(Tn—17)
_ 1
S n—1]
3n+5 4 .
o4 7 < e provided ln_1|<e

Now neZt, son—1>0
[n—1=n-1

we require n —1 > —

€
3n+5 4 . 1
— 2| < e provided >14+ -
’771—4 7 provided m > 1+ 2
3 5 1
nt :%foralln}N:l—&——
n—oo Tn —4 €

7 Since lim an, =a and lim b, = b,

n—oo n—oo

lim aan, = aa and lim Bb, = b
n—oo n—oo

Hence, lim (oan + Bbn)
n—0o0

= lim aan + lim Bb, {Limit Law}

n—o00 n—oo

a lim an + 0 lim b, {as a, B are constants}
n—oo n— oo

= aa+ (b
For a=1, B=—1, lim (an —bn)=a—b

n— o0
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EXERCISE J.2

_ 2n—7

1 a i =
tn 3n+ 2

Un+1 — Un
2n+1)-7 2n-—7
T3n+1)+2 3n+2
_2n—=5 2n-—7
T 3n+5 3n+2
_ (2n—5)Bn+2)— (2n—7)(3n+5)
B (3n+5)(3n + 2)
_ 6n? — 1m — 10 — [6nZ — 1im — 35
a (3n +5)(3n +2)
3 25
T (3n+5)(3n+2)
>0 forall nezt
= Up41 > up forall neZt

= {un} is monotonic (increasing)

ii As {un} is monotonic increasing u; = —1 is its
greatest lower bound.
2n — 7 - 3n+2
n+2 3n+2
un <1 forall nezt
Thus {uy } has an upper bound of 1
So —1<up<1 = {un} isbounded.

Also, as un, =

b ilIf b, =

143"
3n+1 3n

T1tsntl 113m
_ 3ntl 432l _3n 32l
(1 + 3n+1)(1 4 37)
B 3n(3—1)
(14 3n+1)(1 4 3n)
>0 forall nezt
bpi1 > by forall n ezt

= {by} is monotonic (increasing)

bn+1 - bn

Hence its smallest member is b; = 3

4
bp > 3 forall neZt.
3" 143"—1
1+3n 1437

! (1)
1437 7

bn <1 forall nezt
So, 3 < by <1 forall nezt

. {bn} is bounded

Also b, =

by =1—

From (1), as n — oo, — 0
1+3n
lim b, =1
n—oo

T entz 1 en 1
63n+1 o en—i—l o 63"+2 1en
(62n+2 _ 1)(e2n _ ]_)
B e3n+1(1 —e)+e(l—e)
(62n+2 _ 1)(e2n _ 1)
B (1 _ e)(63n+1 + en)
- (e2n+2 _ 1)(62" —1)

Now 1—e<0, e3ntl fen >0, 2nt2 > 1,
and 2" > 1
Cnt1—cn <0 forall nezZt

Cnt1 < cn forall neZt

= {cn} is monotonic (decreasing)

Thus ¢1 = is its least upper bound.

e
o2 _
Also, c¢p >0 forall neZt {e™ >0, €2 > 1}

Thus 0<ecp < forall n ezt

e

o2 _
= {cn} is bounded

As {cn } is monotonic and bounded

{cn} is convergent.

Now as n — oo, e — oo, and e ™ — 0
1
— 0
en,efn
. 1
lim — =0

n—oo e —e M

I1X3Xx5xX7X...x(2n—1)
2Mn)

Upt1 1X3XBEXTX...x(2n—1)12n+1)2"n!

2 Let u, =

Un I1X3X5XTX....x (2n—1)2nt1(n 4+ 1)!

2n+1

T 2(n+1)
2n+1

T nt2

<1 forall nezt

Unt1 < up forall ne€Zt {u, >0}
= {un} is monotonic (decreasing)

Thus w1 = % is its greatest lower bound.

Also up >0 = 0<up<1
= {un} is bounded

Thus {uy} is convergent.

3 £1 =0 and Tnt1 =4+ 3Tn, nE 7+
a Pp: {xn} is monotonic increasing,
thatis, xp+1 > xn forall n € ZT
Proof: (by induction)

(1) 22 =+/4+3(0)=2
ox2 2T
Py is true.
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(2) If Py is true, then zpy1 > g, k€ZT . (%)
Now J?k2+2 — w,f_H =4+ 3zpy1 — (4 + 3z)
=3(Tk+1 — Tk)

>0 {from * }
= w2l
= Tpgo = Tpp1 {3 Tpqo, Tpp1 = 0F
Thus Py is true and Pp1 is true whenever Py, is true
= P, istrue {POMI}
b x1 =0 T5 ~ 3.8752 Tg ~ 3.9975
T =2 6 ~ 3.9529 10 ~ 3.9991
r3 &~ 3.1623 x7 &~ 3.9823 11 ~ 3.9996
T4 A 3.6724 g &~ 3.9934

The experimentation suggests that 4 may be an upper bound.
¢ Py If 21 =0 and 41 = V4 F 3z, forall n€Zt
then x, < 4.
Proof: (by induction)
1) Ifn=1, 0<4 Py is true
(2) If Py is true then xp < 4 for k€ Z+
Now xk:2+1 =4+ 3xg
ol <4+3(4)
= z2,<16

{using Py}
= xp41 <4 {as xp41 > 0}
Thus Py is true and Py is true whenever Py, is true
= P, istrue {POMI}
Hence, 0 < z, <4, so {zn} is bounded.
d From a and ¢, {z,} is convergent.

If lim z, =L say, then lim z,41 =L also.
n— oo n—oo

Since lim zp41 = 4+3( lim xn),
n— 00 n—oo
L =+4+43L
L?=4+3L

L2 -3L—-4=0
(L-4)(L+1)=0
L=4o0r—1
L=4 {as zn > 0}

lim =z, =4

n—oo
awu =2= % b wu, is defined by:
1
U2—% uy =2 andun+1:1+u—
_5 n
us =3 forall nezZ™t.
we =8

¢ {uy} is not monotonic as uz < ui but uz > ua.
All terms of the sequence {uy, } are clearly positive.

1
So, as up—1 > 0 and wup, =1+ ,
Un—1

we deduce

unp >1 forall neZ™t.
Thus %n—1 > 1 and

<1, forn—12>1
Un—1

Un < 2
1<u,<2 forall nez™
. {un} is bounded.

d Given {up} converges, then

lim uwy, = lim wup41 =L, say
n—oo n—oo
L—l—i—1
B L
s LP=L+1
L?-L-1=0
1++5
L= \/_
2
1 5
But L >0, so lim up= +\/_
n—oo 2

1 2
5 Unt1 =35 |un+—

Un
a i uy = 5 iii uy = 7
ug = 2.7 u2 = 1.5 u2 ~ 3.64290
u3z ~ 1.72037 u3z ~ 1.416 67 u3 ~ 2.09594
ug ~ 1.441 46 ug ~ 1.41422 ugq ~ 1.52508
us ~ 1.41447 us ~ 1.41421 us ~ 1.41824
ug ~ 1.41421 ug ~ 1.41421 ug ~ 1.41421
uy ~ 1.41421 uy ~ 1.41421 uy ~ 1.41421
ug ~ 1.41421 ug ~ 1.41421 ug ~ 1.41421

i up =1

b No, as in a where u; = 1, ug > u; but uz < us.

¢ Yes,and if lim w, =L then lim wup41 = L also.
n— oo n— o0
1 2
2L*L-i—2
N L
2
L=—
L
L?=2
L=+v2 {as L>0}

3
d Suppose u; =a, a >0, and up4+1 = % (un + —)
Un,

If lim wp, =L then lim wup41 = L also.

i 3
L=§ L+z
2L—L+3

B L

3
L=—

L
L?=3
L=+3 {as L>0}
lim un = /3.

n—oo

k
e If ugy =6 and up41 = % (un + —) then
Un
lim un, = VEk.

n—oo

k
f Suppose u1 =a, a >0, and up41 = % (un + _2>
un

If lim w, = L then

n—oo

L=3%(L K
=3 +ﬁ

lim wnp4+1 = L also.

n—oo
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2L =1L i
Iz
L k
T2
L=k
L=k
lim un_\S/E.
n—oo

o=t ()M ()

N n(n—1)(n—2)...(n — [n—1]) (%)

n!

n 1+1+1<n71>+1<n71)<n72)
e = — _
2! n 3! n 2

1 1 n—1
Ft = (1 E (1 - )
n! n n

¢ i Fromb, e® =1+ 14+ many other positive terms
= e">2 ..(])
To prove that epy1 > e, forall n € ZT,

1 x
f(iﬂ)=<1+—) , x>0, zeR.
€T
Now f(z) — erln(l+zh)
f'(@)
_ _zln(i4z— 1Y) 11 (1+ 1)+ 1'_2
=€ n x x 1+

-1

1 T

)= 1+ m_l]

_ 1

= f(z) g(z), say.

—z2 z2 9
Tro 1 <—> e

-1 1
22 +z M (x+1)2

-1 n 1
(x+1)2

consider

= f(z) |In(1+ 2~

Now g¢'(z) =

T z(z+1)

—(z+1)+=
z(z +1)2
_ -1
T oz(z+1)2
= g'(z) <0 forall >0
= g(z) > hm g(a:) In1-0

g () =

= g(x)>0

Since f'(z) = f(z) g(x) where f(z) >0, g(z) >0

for all z >0, we deduce f/(z) >0 forall z >0
f () is strictly increasing for all = > 0

1 n+1 1\™
= ( ) >(1+—),n>0
n+1 n

= ept+1 >epn forall n>1
Hence, from (1), 2 <

e <ent1

Using b, since

1 2 3 n—1
17— <1, 17— <1, 17— <1l .,1-—x<1,
n
1+1 !

en <14+1+ — +3'+Z+““+E
1

We now need to show that — < forall n > 3,
n! =~ 2n-1

nezZt or nl>2n1

Py nl>2""1 forall n>3, necZt

Proof: (by induction)
() Ifn=3, 31>2%2 = 6>4
Ps is true
(2) If Py is true, then k! >2F—1 kczt

(k+1)! = (k + 1)k!

> 2 x 2k1
— ok
Thus Ps is true and Pyyq is true whenever Py, is
true.
= P, istrue {POMI}
1 1 1 1
So, as en—1+1+—+—+—+ +—
3! n!
11 1 1 1
en <1+ + + = 9 + = >3 +““+_2n—1
11— (5"
Thus e, <1+ 17(?) {sum of a GS}
-2

en<14+2(1-(3)"
= ep <3— (%)THI

= en <3 forall n€Z+, n>3

Thus 2 < en, <3 = {en} is bounded.
So, e, is monotonic (increasing) and bounded
= {en} is convergent.

. 1\"
lim (1 + —) =e
n— oo n

. <n+1>"
lim =e
n— oo n




WORKED SOLUTIONS 171

n—oo n
m m—+1

= lim ( n 1) {replacing n by m + 1}

m— 00 m

lim 2
_ m—oo M+1
lim (™l "

m— 00 m
1
e

n!  m(n—1)(n—-2)x..x3x2x1
N XnXnxn

nmn AXN XN X ...
() ()-0) () 6E)
nn n n "\ n n n
n — 2 of these
n! (n—l)"*Q(l)
_< —
nm n n
(2 G 6)
0<—< (1—-— —
nn n n—1 n
But
1\" 271 1
lim (1——) ( n ) (—):—xle:O
n—oo n n—1 n e

n!
lim — =0
n—»oonn

EXERCISE K.1 s

1 n
— (o2 —_ 1
1aen=(@rsan 5 < (1)
oo (e o) 1 n
Y < X (3)
n=1 n=1
1 X 1\
But 82_" is positive and nzzzl (Z) 18 a convergent
geometric series
1
= —— converges {Comparison test
n; - converges {Comp }
n? 1
b lim m = lim 1 >
n—oo n n n—oo
3 <1 + 5) (1 + 5)
—1
3
#0
) n2
Z ———— diverges {Test of divergence}

8(n+ D(n +2)

> =)
n=1
series are convergent geometric series.
oo
3n + on
Hence, Z
67’7.

n=1

oo
+ Z (%)n where these two
n=1

converges.

> /1 1 01 1
d Z s :Z;_Zﬁ where
n=1 n=1 n=1
1 1
Z — diverges and Z — converges {p-series test}
n n2
n=1 n=1
> /1 1
Z (— — —) diverges
n 2
n=1
2n? +3n 2
2 Let ap = —— and b, = —
Y VBT Ve
an2 4ant + 12n3 + 9n? n3
oo 27 TR TR o
b,2 5+n7 4
_ 4n” +12n8 + 9n®
- 4n7 +20
3 9
47 (1 +5,t m)
P (1 + 37)
n
a;
lim — =
n—oo n
Since an >0 and b, >0, lim an _ 1

n—oo On
o0 o0
= Z an and Z by, either both converge or both diverge
n=1 n=1
{Limit comparison test}
oo

But Z——2Z

n=1 n=1

p-series test (p > 1).

which converges using the

> 2n2+3
Thus converges.
o
3 Consid il 0<1<1f11 ezt
onsider —: — < — forall n
=onn nn o n?
m S X
n=1 nm n=1 TL2
1
where Z ) converges  {p-series test}
n=1
oo
Z — converges  {Comparison test}
— n"
. =1
Consider —
!
1 1
nl nm—1)(n—2)...(3)(2)(1)
1 1
=

— <
nl  2X2x2x..x2x2x1

n — 1 of these

forall nezt

1
= 0< =<
n! ~2n—1

1

But Z o1
n=1

o0
Hence, Z — converges {Comparison test}
n!

n=1

is a convergent geometric series.
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1

1
v/nn+1)(n+2) = ﬁ
1

4 a

T als

1

oo
> —— converges {p-series test}

nl-5

1

- n; /nln+ 1)(n+2)

converges

{Comparison test}
b nn+1)(n—-1)=n®>-—n<nd

J/nn+1)n—-1)<n

1
3/nn+1)(n—1)

>, 1

ngQ /nn+1)(n—1)

[e°e]

1 1
> — here — diverges
~ where > - diverg

n=2

diverges

{Comparison test}

¢ As 0<sin?0< 1 forall 6 €R,

sin?n 1
< —
n\/ﬁ nl.5
> 1
Since Z 7§ converges
— nt
n=1
> sin?n
= >

{p-series test}

also converges  {Comparison test}

d Since > ﬁ forall neZt,
n—1 n
n 1
vn oL
n—1" n05
> 1
But E 05 diverges {p-series test}
n=2
oo
n
= Z v also diverges  {Comparison test}
n—omn—1
. 142" 2" 4 2m
e Since < ————, then
1+3n 3n
142" 2 x 2™
2Ty
1+3m 3n
s n
But > (%) converges {geometric series, |r| < 1}

3
Il
—

oo 9 n
= 22 (g) converges

converges {Comparison test}

From the graphs of y =2 and y =Inx
Inz <z forall >0
1

1
— > — forall x>0
Inz x

1 1
— > = forall neZT, n>2
Inn n

01
But »  — diverges {p-series test}

n=2

> 1
Z —— diverges also  {Comparison test}

n=2 Inn

oo oo

5 Z 2" [sin™ x| = Z |2sinz|™ which is a geometric series,
n=0 n=0

converging for |r| < 1 Yy

[2sinz| < 1

1

—1<2sinz <1 2

1 . 1 -
—5 <sinz < 3 <

[SEEESS ]

O<x<% _
5T T
or F<$<T

or HT“<Q:<27r

e [ 1 n
6 If Y (1+c)""=2, then ) <1+c) =2

n=2 n=2

o0 1 n
where Z (r) is a geometric series with Soo = 2.
c

n=2

ui

2
Since u; = < ) and Seo =

1+c 1—r

()
Tre 2
o +c ><(1+c)
1 (L) (1402
1+c
1
2= ——
(1+¢)2-(1+¢)
2l +2c+ct—1-( =1
202 4+2c—1=0
_ —1+V3

{quadratic formula}

c
2
But |r| <1
— <1
|1+ ¢
[1+4¢ >1
l1+4¢c>1 or 1+ec<—1
c>0 or c< =2
-1
Thus c:\/g
2
T
7 a x) = is continuous for all x > 1 ... (1
fa) = = M)
{z2>0 = z2+1 cannot be 0}
1(z% 4+ 1) — z(22) 1— 22
() = X )

CC2+1)2 _($2+1)2
But z>1 = 22>1 = 1—22<0
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Thus f/(z) <0 forall z > 1
= f(x) is decreasing for all = > 1 ... (2)
Andas x> 1, f(z) >0 forall z>1

f(x) is positive forall z>1 ... 3)
From (1), (2), and (3) we can apply the Integral Test.

Il
e
7 N N
1 —
8
(V]
+‘f*
—
U
SN—

. 1 b 2
= lim | 3
b— oo 1 322 +1
= blim (l [ln(a:2 + 1)] 1)
= lim $(In(®* +1) —In2)
b— oo
which DNE, {as b — oo, In(b?+1) — oo}
i LY {Integral Test}
——— diverges {Integral Tes
Sin?+1
b f(z)= ze= = % is continuous forall z > 1 ...(1)

(&
{e*® #£0 forall z > 1}

fl(z) = le==” 4+ a:efz2(—2x) = 6712(1 —22%)
1— 222

fl(z) = ——=— <0 forall z>1
eI
Now if x > 1 then 222 > 1
1—22% <0
1—2x2
f’(:C) = <0
EI
f(x) is decreasing for all z >1 ... (2)

And f(x) is positive forall z>1 ... (3)
From (1), (2), and (3) we can apply the Integral Test.

i 2 b 2
Now re 7 lim ze ¥ dr
1 b—oo 1

Il
=
g8

/T\ VRS
D=
r—
m‘
8
[V
—_
= S
~~

2 .
ne~ ™ is convergent.

8

=
1

n

Inz | .
¢ For z > 2, f(x) =—— ispositive ... (1)
T

(%) z—Inz(1) B 1 —Ina

x2 x2

and f'(z) =

= f(z) is decreasing when Inz >1 {f'(z) <0}
that is, when x > e
f(z) is decreasing for z > 3 ... (2)

1
Also f(z) = =% s continuous for = >1 .03
x

From (1), (2), and (3), the Integral Test applies for = > 3.

“Inz . ®Ing
Now —dz = lim —dz
3 x b—oo 3 x
b 1
lim </ [Inz]! (—) dm)
b—oo 3 xX

T T
fl@) f'(x)
. [[ln x]z] °
= lim
b—oo 2
3
) Inb)2 [In3)2
= lim [ —— - ——
b— o0 2 2
Inb]?
which DNE {as b — oo, % oo}
oo
1
Thus Z an diverges.
n=3 ™
Inn 1 n2 X Inn
Si —_— = = 4 — -
ince Z T 3 Z:: -
Z ln_n diverges also.
n=1 n
d f(z)= is positive for = > 2 ... (1)
zlnx
{Inz >0 for =z > 1}
1
o O(wlnm)—l(llnw—i—m(;)) —(nz+1)
z) = =
[z lnz)? [z Inz)?
f'(z) <0 when Inz+1 <0,
which is when = > ¢!
f'(z) is decreasing for z > 2 ... (2)
Also f(z) is continuous forall z > 2 ... (3)

From (1), (2), and (3), the Integral Test applies for = > 2.

. Inb 1
= lim —du
b—oo In2 u

= lim [ln u] 1:1;

— 00

blim (In(Inb) — In(In 2))

which DNE {as b — oo, In(lnb) — oo}

(oo}
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1
f(z) = is positive for all z ... (1) 11 a As n—o0, Vn—oo
1422
lim — =0
f'(@) = —(1+2%)7*(22) oo N/
—2 o1
= b S, = —
(1+22)2 " ; Vi
/ > 1 1 1 1
fi(x) <0 forall x>1 .. (2) I SR S ST
Also f(x) is continuous for all z € R ... (3) Vi V2 V3B Vvn
From (1), (2), and (3), the Integral Test applies for = > 1. > i + i + L 4ot L
. . - il Vm VR TR
Now dx < —— <a1+ —— dx 1 1
‘/1 1+ 22 nzzjll-‘rn2 ! /1 1+ a2 {since T if k<n}
n
where a1 = f(1) = % (%)
n
oo b = —
Now dr = lim dx vn
1 1 —+ .’E2 b—oo 1 1 + CE2 n
¢ Snz—==+vn {as n#0}
= lim [arctan :1:] vn
—oco Since 0< /n< S,
= bli)n;o(arctanb — arctan 1) and nlimoo /7 DNE,
=5-7 by the Comparison test {Sn} diverges.
o e d Even though lim ——= = 0 (from a), this has no bearing
So,in*, X< > ! <igz nﬂoo\/_
> 4 14+n2 2" 4 on the convergence or otherwise of the series.
n=1
[eo]
> — = lim Sy if this limit exists,
n:1 n—oo

o0
1
9 If p=1, we showed in 7 d that Z o diverges.

n=2

If p<l, nP<n nPlnn <nlnn

1 1
=
nPlnn  nlon
& 1 & 1
= >
§2 nPlnn 722 nlnn
o0
= diverges {Comparison test
gz — T ges {Comp }
If p>1, and n > 3, Inn>1
= nPInn > nP
1 1
= -
nPInn  nP
& 1 > 1
= -
s mPlnn o nP
=1
But Z — converges for p > 1 {p-series test}
n=3 nP
& 1
= Z ——— also converges {Comparison test}
n=3 nPl
1 oo
= + converges.
ZQ nplnn 2P In2 'n,;?) nPInn ¢
oo
10 Z an 1s convergent = lim an, =0
n:1 n—oo
= lim — DNE

n—oo An,

but from ¢ the sequence of partial sums diverges

the series diverges (by definition).

n_ ;2 12 22 32 42 TL2
12 a ==+ttt .+
; 3 31 32 33 34 3n
3-3""(n?+3n+3
_ (n* 4+ 3n +3) mezt
2
Proof: (By the Principle of Mathematical Induction)

() If n=1, LHS =1 and
3-371(1243(1)+3)

RHS =

> 1
= Z — is divergent

n=1 dn

2
3 — —(7) 9-7 2
2 3x2 3x2 3
P is true.
12 22 32 42 K2
(2) If Py is true, then 3—1+3—2+3—3+3—4+....+3—k
3-3"F&2+3k+3)
= 7 ()
12 22 32 42 k2 (k+1)2
EU PR A T T
_3-3 (k2 +3k+3)  (k41)2 (using *}
2 3(k+1)
—(k+1) (3k2 + 9k +9) + 3~ (B 2(k2 1 2k 4-1)
- 2
33D [(3k2 4 9k +9) — (2k2 + 4k + 2)]
2
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_ g—(k+1) (g2 To be correct to 6 decimal places, we require
3-3 (k* +5k+17)
= 5 1
ﬁ < 0.0000005
3—3=(h+1) (k2 L 2k 4+ 1 4 3k + 3+ 3)
= B - 3k% > 2 x 106
6
3—3=+D[(k +1)2 + 3(k + 1) + 3] L s s 2107
= 5 3
Thus Pj4q is true whenever Py is true, and P is true. ks ? 2 x 106
P, is true  {POMI} . \/ 3
,  3-37"(n?+3n+3) - k> 87.36
2 at least 88 terms are required.
3 3
g g EIE3
n—oo 2 x 3n 0
since 2 x 3™ grows much faster than n? 4 3n + 3, 2 a Si=a= Y = a1 =0
2
EIMA3 ) s o Now an = Sn — Sn_1 forall n>2
2 x 3"
5 3 n—1 n-—2
. o - an = _
nli)moo Sp = nleoo 5=3 ntl n
ves, 521 by definition, since from b th W on— [t o2
(4 N —_ 5 t s 1] =
es El g converges, by definition, since from e 2t 1)
corresponding sequence of partial sums converges to limit % _ 2 n>2 nezt
< n2 n(n+1)
Hence 712::13_":5' b a1+ a2 +a3+ag+ ...
S S S
0 2x3 3x4 4x5 7
EXERCISE K.2 I o 9 9 9
) ) Z an = + + + .... and its sum
2 4 4
1 a f(a)de < Ry < / f@)dz ... (1) n=1 X3 3x x5
k+1 k 1— %
11 1 is lim S, = lim =1
If = = —p—2 de =12 n— oo n— oo 1
f@)= = =z, /f(:r) R 1+1
=—+c
5x _ i _1
From (1), T
b b 1 9
lim f(z)dz | < Ri2 < lim f(z)dz Sg=—+4+—=2
b—oo 13 b— o0 12 2! 3' 6
~11° ~11° _5,.3 _
lim |:—i| < Ris < lim |:—:| Sz = 6T 41 24
b—oo \ L 5z 113 b—oo \ L5z 112 :
4
1 -1 Sy=24 - =12
fin (5 +) <R < i (554 3) o
5
& <Ri2< & Sy =19+ — =18

6
_ 1719 _ 5039
S6 = ~ 5040
The denominator for S, seems to be (n + 1)! and
the numerator (n + 1)! — 1.

(n+1)!—-1
(n+1)!

(by induction)

20-1

M I n=1 6 ="=3

Conjecture: Sy, = , neEZT.

Proof:

= Py is true

(2) If Py is true then

1+2+3+ . E (k+1)!-1
20731 4 T (k1) (k1)
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l+z+i+....+ k k+1 ¢ As m — oo, 1+%—>oo = Som — 00
20 30 4! (E+1)!  (k+2)!
(k+1)!—1 ka1 Thus Sy, is divergent.
T+ (Rt 2)
.3 I
7<k+2> <(l€+1)!—1)+ k+1 EXERCISE k.3
- 01— > 1 =1 =1
k+2 (k+1)! (k+2)! 1 a > 2n =3 — - > = where » — converges
k) - (k+2) +k+1 n=1 : n=1 " =1 n=1"
(k+2)! and Z 1 diverges {p-series test}
n
- (k+2)! i 72 diverges.
Thus Py is true and P41 is true whenever P, is true n=1
= P, is true {POMI > 1 21—
{PovT} . $loglo
d Since S, =1— ——, lim S, =1 n=1 n=1
oo “Ei-[EE g
o (’I’L + 1)! n=1 n=1 n=1
_2§ 1 i 1
- n n2
{4l (la1)a(lal, 1,1 n=1"  a=1n
b oa Se=1+3+(3+3)+(E+5+3+3) —_—— ——
1,1 1 1 1 1 1 1 diverges ~ converges
+ (5t ta Tttt st ) w1 1
Slﬁ>1+%+(%+i)+(§+%+%+%) Z;—Z 5—  diverges.
n=1 n=1
1 1 1 1 1 1 1 1
+(tHthTtictictist ) il in—l
¢ - _
Sie>1+1+3+1+1 b e

Si6>1+ 3
b Sy =1+2
Sy =1+1%
Sy2 =1+ 2
Sps =1+ 3
Sp1 =1+ 2

. m
So, we conjecture: Sam =14 CR meZ, m=0.

Proof: (by induction on m)
() If m=0, So=81=1+2=1 v

= Py is true

k

(2) If Py is true, Sor > 1+ 3

Now

1 1 1
S2k+1 = Sgk + <m + .+ ﬁ + 2—k>

k 1 1 1
Sgk+1>1+§+ 2—k+2—k+.---+2—k

2k=1 of these

k w1 [ 1
52k+1>1+§+2 (2—k)

k-
Sokt1 > 1+ 3 +3
k+1
Sokt1 > 14+ ——
2
Thus Py is true and Ppyq is true whenever Py, is true

= Ppistrue {POMI}

o0 1 . .
=3 —5 which converges {p-series test}

n=1"

1 1 1 1
2 a — - -

In2 In3 In4 In5
g

np Inn

[ee]

which is an alternating series of the form Z (=1)"bn
1 n=2

where b, = —
Inn

Consider y =Inz, x >0, z€R

A P .
Y In z is increasing for all

z€e€R, x>0.

1
/ . —— is decreasing
> Inz

forall z€ R, >0

1
Thus b, = on is decreasing for all n > 2, n € Zt
n
Also lim b, =0
n—oo

P

n=2

converges
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1
oo 3 \/ﬁ ) CIIE
b F —1n-1 , d =
or nz::l( ) —— consider f(z) poy
_1 1
1 2( 2
z z+4)—x2(1)
where f/(z) = 2
I (z+4)2
1 2
B VT + N VT
(@92
2 _yF
_ vz 2
T (x+4)2
_ 4—x
T 2ya(z 4 4)2
f'(z)y<Oforall z >4
f(z) is decreasing for all = > 4
Thus if b, = ﬁ then by, is decreasing for all n > 4
n+4
1
Also, as n — oo, by, = \/ﬁ — 0
14—
n
lim b, =0
n—oo
o) —1 n—1
Z M is convergent
fo n+4
{Alternating series test}
—1\pn
a Let ap = u
n!
an+1 (n+ 1)n+1 n!
= X —
an (n+ 1)! nn
B (n +1 ) "
N n
1 n
(-3
n
lim |2 = ¢ whichis > 1
n—oo Qan,

oo
Z an is divergent {Ratio Test}

n=1

b Consider f(z) = sin(z) forall z > 1
x

£e) =cos(Z) x o = ﬁ

2 2
fl(x) <0 forall z>2, z€R

by = sin<£> is decreasing for all n > 2, n € 7t
n

Also lim b, =0

n—oo

oo}

m
Hence, Z (—1)"sin (—) is convergent
n

n=2

{Alternating Series Test}

>, T
= Z (—1)" sin (—) is convergent.
n=1 n

5 (%)

1 -2
¢ Consider f(z) = — =[nz] 3
Inx
_ir1
/@) = ~4na] 7 (5)
T
! -1 . .
fl(x) = — which is < 0 forall « > 2
33:(lna?)g

= f(=x) is decreasing for all = > 2

Hence b, = e is decreasing for all n > 2 and since
nn
= (-
lim b, =0, ——— is convergent.
n— oo " n;Q \3/ Inn €

{Alternating Series Test}

_ 1 1 1 1 1
L TuwtE wta
oo (71)n—1
2 (en—1)!
-1 n—1
Let a = D
(2n —1)!
n+1 ‘ _ 1 " (2n —1)!
an | (2n+1)! 1
a 1
= n41 ‘ _
an (2n 4+ 1)(2n)
Thus lim |22+ =0 whichis < 1
n— oo Qn,

. nm
oo Sin (?)
Hence, Z _

' is convergent {Ratio Test}
n!

n=1

{Alternatively the Alternating Series Test can be used}

(="

e Let a, = 2]
n+y1| 1 2™n
an ‘ T oontl(n 4 1)! 1
B 1
C2(n+1)
lim |24 =0 which is < 1
n—oo | an
Hence i (D" is convergent {Ratio Test}
= 2mn!
f Let f(z) = 3w2 o )= 2z (2% + 1) — 22(322)
341 (z3 +1)2
_ 224 4 2z — 3z*
ST
(2 - z3)
NG
and for n>2, 2—23<0
f(z) <0 forall z>2

f(z) is decreasing for all z > 2
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°° 2 ) So, by the Estimation Theorem
. g1 M \mal ) ,
So, if 2_:( 1) e nz_:l( 1)**+1b, then by, IS — Sal <
is decreasing for all n > 2 and also = S4—b5 < S S Sa+bs
1 = 0.841465 < S5 < 0.841471
- S ~ 0.8415
lim by = lim —2 =0 = (—1)n 1
e nee — < — lternati ies with by, = ——
1+ — nz::() gy 1S an altemating series with bn = oo
S n+1 - 1 1
Hence, gQ(—l) is convergent Now bpi1 —bn = 2"+1(n 1) = Sl
oo 2 1 1
41N . _ 1 — -
= nz::l(fl)” — is convergent {as a1 = 5} = Sl <2(n ) 1>
1 1—-2n—2
oo (_1)n+1 ) ) ) ) 1 = n_l —_—
4 > ~—— is an alternating series with bn, = — 2npl \ 2(n+1)
— n! n!
" 1 1 __—@nt1
As 0< m < ] forall n € ZT, then on+1(n 4 1)!
A +
0 < bpy1 < bn forall nezt whichis < 0 forall n€Z

= {bn} is decreasing for all n > 1
Also lim b, =0

n—oo
[e'e} (_ 1)n+1
Thus Z is convergent
foyune' n!

{Alternating Series Test}
1 1 1 1 1 1 1

Now S_ﬂ_5+§__+_'_§+ﬁ_""

1 1
— = — ~0.00139
6! 720
be < 0.005
1 1 1

1
d Ss=1--d4-— — 4+ ~063333
and s 576 24 120

So, by the Estimation theorem

|S — S5| <
= —0.00139 < S —0.63333 <
= 0.63194 < S < 0.63472
Thus S =~ 0.63

o) (_1)77,—1 ) ) ) )
Z ———— is an alternating series with
— (2n —1)!

where bg =

0.001 39

1

bp = ————
(2n —1)!

1
< >
2n+ 1! (2n—1)!
0<bpi1 <by forall nezt
= {by} is a decreasing sequence, n € Zt.

Now as 0 <

Also lim b, =0

n—oo

oo (71)n—1
Thus nZ::l —(2n T

is convergent

{Alternating Series Test}

N S—l 1 1 1 1
ow —ﬁ*§+§*ﬁ+afn..

1
and bs ~ ] ~ 0.000002 76 < 0.000 05

and Sy ~ 0.84146825

Thus by41 < by forall n €zt
= {by} is decreasing for all n € Z+
Also lim b, =0

n—oo

o (="
Hence, Z Tl is convergent
oy n!

{Alternating Series Test}

—1_ i i, 1 1, __1
Now 5 =1 +8 st 332 380 T w02

where by = gk ~ 0.000 02170 < 0.000 05

and S ~ 0.60651042
But, by the Estimation Theorem
|S — Ss| <

= 55—b7§S<S + by
= 0.606489 < S < 0.606 532
S ~ 0.6065
& (=t
5 Y s =i stwm-owmtmmome Tt

n=1
S1 = S ~ 0.899 7824
Sa2 = 0.875 S7 ~ 0.9026979

Sg ~ 0.9007447
S4~0.8964120 Sg ~ 0.902116 5

S5 ~ 0.9044120 S10 ~ 0.9021116

An estimate of the error in using S1¢ to approximate S is
bi1 = 733 ~ 0.0007513.

S3 ~0.9120370

[ee]

6 We are given S = 2:(—1)"_1 bn where by > 0, {bn}is
decreasing and limn bi =0.
n—oco
a Sy = (—1)0b1 + (—1)1172 =by — ba
But bpy1 < by forall n€ZT = by < by
So >0

b Sy =(=1)%; 4+ (—1)tba + (—1)%b3 + (—=1)3bs

=b1 —ba+b3—bs
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7

Thus S4 — S2 =b1 — by + b3 — bg — (b1 — b2)
=b3 — by

which is

Likewise Sg — Syq >

0, Sg —Seg =0, etc,

and as  Sop — Son—2 =bapn—1 — b2, >0
Son — S2n_2 >0 forall neZt.

Thus Sop = Son—2 >
So 0<SQ\S4\

> Sop—4 2 ... 2842 852

=
< 52n74 X S2n72 < SQTL

¢ Son =b; —bo+b3—bg+....

Son = b1 — (b2 —b3) — (ba — bs) —
— (b2n—2 —ban—1) — ban

where by —b3 > 0, by —bs > 0

and bo, >0
Son < b1

>0 {as {bn} is decreasing}

—bon—2 +bop—1 —ban

, bap—2—ban—1 >0,

d From b and ¢, {S2,,} is increasing and has an upper bound

of by

= {Sa2,} is convergent to S, say

lim S3, = S.

n—oo

e Sont1

=b1 — b2 +b3 —bg+ ... +ban+1 — ban + bant1

S2n

Son+1 = Sa2n + bant1

f Frome, lim Sap41 = hm Son + hm bon41

n—oo

:S+0
=S

Thus lim So, = hm Son+1 =S

n—oo

= lim S, =S5

n—oo

(=3)"

>

alf a, =

n

SE

b If ap = —5——
2+1
= (D
=
Z n2+1

lim

’)’L! n— 00

is absolutely convergent

s

an+1 ‘

an n—00

= lim

gntl  p)
(n+1)! 37

=0

lim

n—oo

an+1 ‘
an

{Ratio test}

2n+1
li
anoo (TL + 1)2 + 1 <

2
1
— lim 2<L
n

n— oo 2+27L+2
1+ 2
= lim 2 5 5
n—oo = —_
1+n+n2
:2><%
=2

is divergent {Ratio test}

n?+1
2’I'L

(=1)™arctann

c If ap = 3 then
n
s
|arctan n| 2
lan| = 3 < -3
n n
1
But Z —3 converges {p-series test}

n
©
= Z 2 also converges

fe
= Y lan| converges {Comparison test}

X (—1)™arctann .
Z — s s absolutely convergent.
n

1-3 " 3n —1\"
d If an:< n) then \an|:( n )

3+4n in + 3
= lan < (3)"
oo
But > (%) is convergent  {a convergent GS}
1

n—=
o0
Z |an| is convergent {Comparison test}
X (1-3n\ .
Z is absolutely convergent.

1
e Consider f(z)= -z
x
1
—~r —Inx 1-1
Now f/(z) = +— = znx
z x

f'(z) <0 forall z such that Inz > 1, thatis, z > e

1
Thus {ﬂ} is decreasing forall n > 3, n € ZT ... (1)
n
) . Inx . %
By I’Hopital’s Rule, lim — = lim = =0
r—oo T n— oo 1
. Inn n
lim — =0, n€Z .. (2)
n—oo M
X (—=1)ntl]
From (1) and (2), Z ()—nn is absolutely
n=1 n
convergent. {Alternating Series Test}
1
f Let b, = , then lim b, =0
nlnn n—oo
1
Now consider f(z) = —— = [zlnz]™!, 2> 2

zlnz

() = —[zlnz] 2 <1lnx +z (i))
_ —(lnz+1) -

(zlnx)2 9
So, f/(z) <0 forall z > 2

is decreasing for all n > 2, n € Zt

oo —1)"
Thus Z u is absolutely convergent.
n
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g Let bp=vVr+1—+r

br=(\/rT\/F)<”+1+\/F)

NS

b — r+1—r
Y s N

b 1 < 1

BN N
b'r)_

Z 27;1\/7"+1
br>l — {n=r+1}
(oo}

where E —— is divergent {p-series test}

n=2

No an4-1 _ ||
an (n+1)! 2» n+1
lim |22 =0
n—oo Qn,
oo xTL
= Z - is absolutely convergent and .. convergent.
nzo ™
b By the Converse of the Test for divergence
oo
Z an 1s convergent = lim a, =0
n:O n—oo
oo "
Z — is convergent
o™
n
= lim — =0
n—oo n!
o0 o0 I’ﬂ
9 a Z Z—with z =10
n=0 n! n=0 nl
by 8 a, Z —— converges.
n=0 n!
1 1
b For n > 1, <
Vn+1)(n+1)  /n(n+1)
1 1
=
n+1 (n+1)
i 1 i 1
= > <Y —
n:1n+]‘ n=1 n(n—l—l)
>, 1 1
Note that _— = Z — | — 1, which is the
—n+1 - n
n=1 n=1

Harmonic Series with the first term removed.

oo}
1
Since Z — diverges {p-series test}, it follows that
n=1"
Z —— diverges.
n=1" n+1
(oo}

diverges

H
e 21 A\ /n(nJr 1)

{Comparison test for series}

2n 2
¢ lim = lim —— =1#0
n—oo 8N — 5 n— 00 84*;
< 2n .
Z is divergent.
— 8n —
n=1
cos (&
d Let an = ﬁ
n2 +4n
n 2 2 +
Now |cos 3 <1 and n“+4n>n", n€Z
lan| < -
o0 oo 1
0< Y lan| < Y —
n=1 n=1
1
where Z — is convergent {p-series test}
n=1"
o0
= E |an| is convergent {Comparison test}
n=1
= cos (%) )
= Z ——— is absolutely convergent and
— n2 +4n
n=1
convergent.

nd+1 n3

nt—1" nt
2nd+1 X1
> —
nz::Q nt—1 22 n
21
But > — diverges {p-series test}
n=2"T
[e’e) 3 1
= Z i 1 + diverges {Comparison test}
n=2"" =
n!
f Let a, =
2X5X8X ....x (3n+2)
an+1 ‘ _ (n+1)!
an 2X5x8X....x (3n+5)
2X5X8X....x (3n+2)
. n!
_n+1
3n+5
An+4+1 1 1
li S =1 n —Ll2y
ni»moo QAn nﬂmoo 3+ % 3 75

o0
by the Ratio test Z ap converges.
n=0
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2
1 a n
10 If ap, = —, lim n—“’: im —— —
n?’ nooo an n— 00 (n+ 1)2 1
n2
= lim —w5/——F——
n—oo N2 +2n+1
li !
= lim ———
n—oo 2,1
1 + n + TL2
=1
1
by the Ratio test Z — could be either convergent or
n=1"

divergent.
But, from the p-series test it is convergent.

an+1
an

. . 1
Likewise, if ap = —, lim
n n— oo

So, once again the ratio test is inconclusive.

EXERCISE K.4 I

1 a Y o =14a3+a4+a%+22+ .
n=0

with w3 =1 and r = z3.

S
u1

E 3" = =

fogur' 1—r

1_ 23 pro

Thus, the radius of convergence is 1
convergence is |—1, 1].

1

im

n
1

lim T

1

which is geometric

vided
= |z3| <1

[r| <1

= lz] <1

and the interval of

b i(Qfm)”:1+(27m)+(27x)2+(27m)3+....

n=0
which is geometric with u; =1 and r =2 — z.
e 1 1
Y e-a)n == =
"o 1—r 1-2+=x rz—1
provided |r| <1 = 2—2z| <1
= le—2l <1

= —-l<z—-2<1

= 1<
Thus, the radius of convergence is 1
convergence is |1, 3[.

r <3
and the interval of

oo
< Z (=D)nazt =1 -2t 428 — 212 + 216 + ... which is
n=0

geometric with u; =1 and r = —z%.
I . p——
= 1—r 1+4az*
provided |r| <1 = i—x4| <1

= lz* <1
= lz] <1

Thus, the radius of convergence is 1
convergence is |—1, 1[.

and the interval of

oo
2 Ziflﬁ-i—&-i—ki—k is geometric with a3 = 1
1
and r = —.
22
i 1 a1 1 z2 _ z2
n:Oa:Q"il—ril_i x2 ) 221
xZ
. 1
provided [r| <1 = |—=|<1
T

3

= {x2| >1
= lz| > 1
= z>1 or z<—1
the interval of convergence is |—oo, —1[ U ]1, oof.

a If a, =nb"2",

. Gn+1 . (n+1)5nF1gn+l
lim |——|= lim |————
n— oo an n—oo nbnxn
. 1
= lim 1+ — |5z
n—oo n
= |5z
=5|z|
o0
So, by the Ratio test Z n5"z™ converges if |z| < %
n=0
and diverges for |z| > %
the radius of convergence is %
As the Ratio test is inconclusive for |z| = % we examine
each case (z = % and =z = f%) separately.

1 1 n o0 oo
If T =%, an:n5”(3) =n and Zlan: Zln
n= n=

diverges {since lim n # 0}
n—oo

If = f%, anp =nb" (f%)n =(=1)"n and
o0 oo
Zan = Z (=1)"n diverges
n=1 n=1
{since lim (—1)"n # 0}
n—0o0
oo
Z nb5™x™ is convergent for f% <z < % only; its
n=0
radius of convergence is % and its interval of convergence
is ]—%, %[
3™
b If ap = ——,
T (n+1)?
) ani1 ) 3n+13)n+1 (’I’L+1)2
lim |——| = lim
n— oo an n— oo (’I’L + 2)2 3":{,‘”
1\ 2
= lim 3m(n + )
1+1\?
= lim |[3z g
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But li = |3z|

1+41
im g =1, so lim dntl
n—oo 1+ = n—oo an

oo 3nxn
Thus Z m is convergent if

n=1

[Bz| < 1
1
lz| < 5
= f% <z < % {Ratio test}

As the Ratio test is inconclusive for |z| = %, we examine

the cases « = % and =z = f% separately.
DI SRRt R S
If =%, =
—3 n=0 n=0 (n + 1)2 n=0 (n + 1)2
oo o0 1
But 0 < — where
Z ( + 1)2 nz::o n2
1
Z — converges {p-series test}
n=0"
>, 1
by the Comparison test ———— converges.
y p nX::O CESIE g

oo
If 2=-1, an = = = 7
Leoe 2o o e~ Sy
which converges by the Alternating series test.

is convergent for —% < z < %.
Z n+1)2 g 3STS 3

It has a radius of convergence of % and its interval of

14
3’ 34
(_1)nx2n71

convergence is [—

¢ If ap, = , then
(2n —1)!
lim | dntl ‘ B 2+l (2 — 1)
ni»oo an T n—oo (2n + 1)! z2n—1
m2
n—oo 2n(2n + 1)
=0

oo
Z an 1s convergent for all =z € R.
n=0
It has an infinite radius of convergence and its interval of
convergence is R.

(=D"(2z + 3)"

d If a, =
nlnn
lim Gntl ‘
n—oo | an
B (2z 4 3)7t1 nlnn
" n—oo | (n+1)In(n + 1) (22 4 3)n
= lim |22+ 3| X —— o ln—n

= |2z + 3|

{as

n Inn
—1 and ———— — 1}
n+1 In(n+1)

Z arn is convergent for |2z 43| <1
=0 ~1<22+3<1
—4<2r< -2
—2<r< -1

As the Ratio test is inconclusive for = —2 and z = —1
we examine each of these cases separately.
>, 1
If £ = —2, we have Z
n=2

<1
Now dx
5 zlnz
. !
= lim dx
b—oo , Tlnz
. ® 1 du du 1
= lim — —dz {fu=lnz, —=-}
b—oo , udz dr =
1nbl when =2, u=1n2
= lim —du
b—oo 2 U when  =b, u=1Inb

lim ( [ln \u\] i:};)

= llrn (In(Inb) — In(In 2))

b—oo

nlnn

which DNE
o0
by the Integral test, Z
n=2
- (=D" 1

For z = —1, we have where b, = N
— 71;2 nlnn " nlhn

1 L
is divergent.
nlnn

n>2

1
Consider f(z) = =[zlnz]~?!
zlnz

f'(z) = —[zlnz] 2 (1 Inz+x (i))
(Inz+1)

[zlnz]?
f(z) <0 forall x> 2
{lnz+1>0, [zlnz]? >0}

f(z) is decreasing for all = > 2

= b, = is decreasing for all n > 2, n € Z+t
nlnn
and lim b, =0
n—oo

= (=)™ . . .
Z is convergent {Alternating Series test}
=y nlnn

z“

—2<z< -1

(2z +3)™

is convergent for
nlnn

Hence, the radius of convergence is % and the interval of

convergence is |—2, —1].
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2X4X6X8X....x (2n)x™
1Xx3x5XT7TxX....x(2n—1)

i1 2X4X6X8X....x (2n+ 2)znt]

Let ap =

Now =
an 1X3x5xX7xX...x(2n+1)
1X3X5XTX....x (2n—1)
2X4X6X8X....x (2n)z"
<2n+2>
= T
2n+1
. An+41 . 2n +2
lim |——| = lim |z
n—oo | an n—oo \2n + 1
=1x|z|
= |=|

o0
= > an is convergent for |z| <1
n=1 thatis, for —1 <z <1

As the Ratio test is inconclusive for x = +1, we examine each
of these cases separately.

2x4X6X8X...x (2n)(—1)"
1x3x5X7xX...x(2n—1)

(3) % (3) = (8) = (3) = -

X (2n27_l 1) x (=1)"

|an| > 1 {as each fraction is > 1}
lim an #0

n—oo

If x=-1, anp =

oo
= Z an diverges {Test for divergence}

n=1

oot o (2) (2)(2) (3) - (52)

an > 1 also

lim an #0

n— oo

oo
= Z an diverges {Test for divergence}

n=1
oo
Thus Z an converges forall z in —1 <z < 1.
n=1

Hence, the radius of convergence is 1 and the interval of
convergence is |—1, 1].

a  f(z)
:1+2x+x2+213+z4+...,
=422+t 42+ ) +2e(1+2®+2+ )
=(1+2x)(1 + a2+t + 28+ n)

GS with w3 =1, r = 2

=(1+42z) x provided ’x2’ <1
1— 22

1+ 2x

= rovided |z] <1
T2 P ||
the interval of convergence is |—1, 1[.

142z
b =
fa) = T

oo
If Z cnx™ has radius of convergence R, then |z| < R.
n=0

Now let x = 32

oo
Z cny?™ has radius of convergence R

n=0
|y2’ <R
> <R

|y\<\/§

oo
Thus Y cp@?®® converges when |z| < VR

n=0

the radius of convergence is V' R.

oo oo
(en +dn)z™ = Z cnz™ + Z dpz™
0 n=0 n=0

NgE

n

oo}
where > cpa™ is convergent with |z| < 2
n=0

o0
and ) dna™ is convergent with |z| < 3.

n=0
Since |z| <2 and |z] < 3, we demand |z| < 2

the radius of convergence is 2.

n

T a
If a, = —— then lim Intl
n23” n—oo an,
anrl n23n
= lim
N 00 (n+1)23n+1 n
m (755) 15l
= lim —
n—oo \n + 1 3
_ m‘
3
s A T
5o converges for —) < 1, thatis, for |z| < 3.
o 3
1 oo
When z =3, an = — where Z — is convergent.
n “on
—1)n 2 (~1)n
When z = -3, a, = % where Z ( 5 converges
— n n
n=0
absolutely.
o0 n
> agn converges for all x € [—3, 3], and has radius
n
n=0

of convergence 3.

nwnfl xnfl
If ap =———= then
" n23n n3n
a " n 3"
lim n_—i—l‘ = X
n— oo an n— oo (TL + 1)3n+1 n—1
. n T
= lim ( ) —
n—oo \n + 1 3
|z
13
> n—1 x
Z —a3n converges when g‘ < 1, thatis, for |z| < 3.

n=1
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1 >~ 1 121 . 0.1 o n—1
When z =3, a, = — and Z—:—Z— is Zm—dx is defined
3n n=1 3n 371,:1 n 0 n—1 (TL — 1)'
divergent. {p-series test} 01 i 1
(—1)»-? / ( 2\
When z= -3, a, = T and o =i (n=1)!
oS © (1 n—1 oo 0.1
Z an = Z L which = Z —1 " ldz
n=1 o1 o = (n—1)! 0
converges conditionally. oo 1 Zn 701
00 -1 ) = Z — [_
Z 3gn converges for all = € ]—3, 3], and has radius a1 (n=1)! n lo
—o
" > 1 (0.1)"
of convergence 3. = [ -0
= (n—1)! n
’E(ZF>Z(EW) =S e o S
n=1 T n=1 : = 10mn(n — 1)! Zin(n—1)!
—1
_ oo nxn' . - (71)n
n=1 > Z2n
n=0
o pn—l 1 1
— Z an+1 2n| _
w1 (n—1)! an 2ot T T 2
a z"™ (n—1)!
where lim nil lim |— ( _1) interval of convergence |—| <1
n—o00 an n—oo TL! x™ xz
I || x>l
= lim —
noo M z>1 or z<—1
—0 x €]—o00, —1[ U ]1, oof
oo gn-1 [—2, —1.5] is within the interval of convergence
Z W converges for all z € R {Ratio test} - the interval is defined.
= (n—=1)!

vl (/Oz o dt) - 20(—1)" </_;1.512" dm)

n=0 nl
) tn+1 T i $—2n+1 —1.5
-y = -
n;o”! |:n+1:|0 n=0 —2n+1| ,
= i J— x”+1 — i (_1)n ((_1.5)1—2n (_2)1—271)
aon! \n+1 = (1—2n)
oo mn-|—1 oo (_1)1771
= or = 1.5)1=2n —gl=2n
= 1) X ooy (@9 )
a z" T2 (n41)! >
where lim |—FL| = lim | —n Q < Z z2n
n—oo an n— o0 ('I’L —+ 2)' J}n+ n—0
o el anp | _ |20
B n—oo N + 2 Qn z2n
=0 lim dntl) _ z?
>, In+1 . n—oo Qan
Z ——— converges for all z € R {Ratio test} ) R
= (n+1)! series converges for ‘m ‘ <1
. that is, for —1 <z <1
10 In each case we first need to find the interval of congruence for o o -
each series, to check that the given interval is defined. When z = —1, Z (=1)27 = Z 1 — Z 1 diverges,
00 :E"_l O pn ) n=0 n=0 n=0
Z m = Z — by Example 38 a this has an since lim 1 0.
n=1 : n=0 n—oo

infinite radius of convergence.
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oo (e o)
When z =1, Z 12" = Z 1 diverges,

n=0 n=0

since lim 1 # 0.

n—oo

the interval of convergence is |—1, 1[

3 /[ oo w [ 3
/ <Z 12"> dx = Z / 22" dz
0 n=0 n=0 0

n=0
i 1
C 2 (2n 1) x 220+l
o0
11 From question 10 part ¢, Z 22" has an interval of convergence
n=0
of 1-1, 1f.
2 (oo}
/ <Z :1:2") dz is not defined as the interval [0, 2]
0 n=0

lies partly outside the interval of convergence.

EXERCISE L.1 I

1 a f(z)=sinz o f(0) =
f(z) = cosz f(0)=1
f'(x) = —sinz f'0)=o0
f"(z) = —cosx £ 0) = -1
3 (k‘) 0 k
To(x) f ]i' )
k=0
z2 x>
= f(0)+ f(0)z + £(0) or T £(0) 3
73
=0+e+0-
1,3
= r - —
3!
b sin (%) =173 (%)
—3-fmxd
71' 773
~ 5 T 750
~ 0.5870 (4 d.p.)
4
10 % (%)
¢ Rz (Z:0) =—— > c€lo 5l
4
sinc x (%)
- 4l
4
ey < B oo
. |Rs (2.0)| < S 7000649

o | (%) —sin (%) ] < 0.0065

—0.0065 < T3 () —sin (%) < 0.0065
—0.0065 < 0.5870 — sin (£ ) < 0.0065
~0.5935 < —sin (¥) < —0.5805

Pyl

0.5805 < sin (%) < 0.5935

the approximation is accurate to 1 decimal place only.

) x3 b
2 smx~m7¥+g+R5(m:O)
where |Rs(z:0)| = ’%
_ —sine x 6
B 6!
_|sinc] |z|®
el

and c lies between 0 and x.
But |z| < 0.3 and max |sinc| = sin(0.3)
sin(0.3)(0.3)6
6!
upper bound is 2.99 x 10~7

|Rs(z: 0)] <

3 The Maclaurin series for sinx is

x> x® 2T 2d

sine = — — +

3! 5! 7! * 9!

(n+1) n+1
The error term is Ry (z : 0) = &

(n+1)!
But f("*+(¢) = +sinz or +cosx
CL‘"+1
R 0)| < ——
[Bne £ 0) < oy
&)™
. m o 60
o |R" (% 0)| < (n+1)!
P n+1
(&)
So, we require ———— < 0.000 005
(n+1)!

when n =1, LHS =0.001371

n =2, LHS = 0.000024
n =3, LHS=0.0000003 v
Using n = 3, sin3° =sin (%)
3
U
(%)
~ L _
60 3!
~ 0.05234

4 f(z)=cosz F(%)= B3
f'(z) = —sinx f (%) =-1
f"(x) = —cos (z)=-¢
f"(z) =sinz " (3)=4%
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The Taylor series for f(z) = cosz about a = % is
’ fll ) (z— % 2
o= () (5) (- 5) ¢ LB D)
fl// (1) (m_E)S
+%+4..
F) (2 (z— Z)"
+ (G)n(! £) + Ry (z: )
Ny
Tn(l‘)=§—%(x—g)_ 2 (2! 6)
x\3
I
3!
F)(Z) (2 — Z)"
+ (G)n(! £) + Ry (z: %)

f(n+1)(c) (I - %)n+1

(n+1)!

But R, (m: E) =

5 where ¢ lies

between % and x.

[F( (0] (02" !
(n+1)!

But cos f("*t1)(¢) = £sinc or £cose

. s . T (O2)7L+1

o |Ba (2402:2)| < T

(0.2)n+1

-———F < 0.001

(n+1)!

(0.2
3!

o |Ra (B4+02:3)| =

So, we require

~ 0.0013

If n=2, LHS =

we require n =3 and

k=0
i (~1)k |:x2k+1:|1
= Kk [2k+1],
S (=D*
= kl(2k + 1)
=1-3+% 3+ 305 ~ ™™
+ 535 — -

1
where 3360 ~ 0.000 107

1
/ e~ dx ~ 0.747 {using first 6 terms}
0

o mk 5 0 :E2k
et = Z - coer = Z —
k=0 k=0
1 1 oo .2k
T
/ ezzdw:/ (Z —'> dx
0 0 k=0
1
S |
= Z —'/ 22 dx
=0 k! 0
| |:m2k:+1 :| 1
i—o k! |2E+1
_ i 1
=0 kl(2k+ 1)
_ 1 1 1 1 1
=l+z+otntost =0
1
-+ 9360 + ...
where gi=x A 0.000 107
! 2
/ e® dxr ~ 1.463 {using first 6 terms}
0
oo Ik [ee] (—CC)k
T _ - —x _
& (=D
Thus, e~ ! = Z where by = —
- K k!

We want |Rg(z : 0)] < bgg1

{Alternating Series Estimation Theorem}

we require < 0.0000005

1
(k+1)!
1
k=28, 5 =~ 0.000002 76

1
k=9, -— ~0.000000276 Vv
10!

So, we use the first 10 terms
111 1 1 1 1 1 1 1 1
T R R TR T BT R

e~ ~ 0.367879 (to 6 d.p.)

a fl@)=e F (@) = e
n wk
Tn(z) = ,;Oﬁ forall n € Z*
(n+1) n+1
and Ry, (z:0) = Al Ol where 0 <c <z
(n+1)!
We require Ry (3 :0) < 0.0001
603n+1
— — < 0.0001 where 0 <c<3
(n+1)!
ec3n+l
Now ———— is greatest when c is just < 3 and
(n+1)!
e’ < 2.723 ~ 20
20 x 3n+t!
So we need to find n when —————— < 0.0001
(n+1)!
" 6
— < 17x107
(n+1)!
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310
If n=10, —— ~0.0015
11!
314
n =14, — ~37x10°¢
15!
315
n =15, —_ ~69x1077
16!
3k
and T15(3 Z — ~20.0855
k= 0

b The Taylor series of f(z) =sinz about a = %

515

~
S
N
=

(TN (p — T2
o) = £(8)+1(8) (o D)+ g2
Now f (%) =sin (%) =1
1'(§) =cos(3) =0
1"(3) =-sin(3) =1
1" (§) = —cos(5) =0
(3)

Il
)
=
=}
—~
ol
~—
Il
=

Trn(z)=1-— 5 + o _
() (- 2"
n!
s f(n+1)(c) r— 5 s
where R, (m; 5) _ (ngl)!z)

and § <c< F+0.1
Since f(™+1)(¢) = +sinc or £cose, |f("+1)(c)|

0.1)n+1
Thus |Rn (3 +0.1:%)| < ﬁ

(0.1)n+1
(n+1)!

we need to find n such that
(0.1)3
3!

n:.?)

< 0.0001

If n=2,

=~ 0.00017
we use

0.1
and T3(%+0.1)—1—%~09950

EXERCISE L.2 I

1 a  f(z)=sinz, o f(0)=0
f'(z) = cos, o f0)=1
f(x) = —sinz, o f"0)=0

f”/(l') —cos, f”l(O)
f®(z) =sinw, o W) =
By Maclaurin’s theorem,
z2 x3
(@) = FO) + f1(0) 2 + £7(0) 5y + 7(0) 57 +
AR )— + Rn(z : 0)
3 5 7 n
—r- S et O
+ Rn(x:0)

<1

2

f(n+1)(c)xn+l

1 1! and c lies
n !

where |Rn(z:0)| = ‘

between x and 0.

But f("*1(¢) = £sinc or +cosc
|Fm (o) <1
|117‘n+1

(n+1)!
|x‘n+1

Thus |Rn(z:0)] <

li Rp(x:0)| < 1 P
n

a
lim |Rp(z:0)]=0 {lim — =0, a€R}
n— oo n—oo n!

i > DMl e R
= = -~ c
f(z) =sinz nz::O @t ) orall z
The radius of convergence is infinite.
b i zsi 2_ il + a® _a +
rsine = — —— 4.
3l 5! 7!
( 1)n 2n+2
nzo (2n +1)!
The radius of convergence is infinite.
- _ (32)°  (32)°  (3x)T
ii sin(3z) =3z — 3 + ST +
_ e
2 (1)

The radius of convergence is infinite.

ili cosz = —(sinx)

B d oo (_1)n$2n+1
T dw <7§0 (2n +1)! )
_ > ( 1)” d ( 2n+1)

= 2n +1)! dz
_ 5 — ) 70 z2
EEENCTERA
B oo (_1)nw2n
_n:O (2n)!

2 ozt 40

=1- ? + Z a + ...

f(ﬂﬂ)—6 “”, 0)=1

f(x) = s (o) =-1

f/l(x) —e z, f/l(O) =1

///(.',U) — —eiw, f///(o) — _1
By Maclaurin’s theorem,

11(0) 22 "(0) g3
f@) = e = 10 + £ oy + L LT
(n) n
—+ w + Rp(z:0)
n
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2 3 4 n n
T z T ™ (0)x
f(:v)—l—x-f—?—?-‘r -‘r..-‘rT
+ Rn(z:0)
f(n+1)( ) n+1
where Ry (z:0) = W and c lies between
n !

x and 0.

Now f(nt1)(c) = te~¢, |f("+1)(c)| =e ©
e |o|" L
Thus |Rp(z:0)| = D) {e€ a constant}
But lim -2 = 0, so lim |Rn(z:0)]=0
n—oo n!

o) —1)ngm
flay=ew = 3o LD ),
=
The radius of convergence is infinite.
—? _ i [GROCI or Z

n!
with infinite radius of convergence.

1n2'n
e )x

n=0

flz)=Inz
1
fl@)===2""
x
_ —1
f(z) = —1z72 = oy
2 2!
" -3 _ —
f(z)=227"= 3=3
-6 3!
(4) -4 _ 2 _ ">
§O (@) = —6at = =3 = =
24 4!
) (z) = -5 _ 2 _ =
(z) = 24z =5
120 5!
(6) —6 -
7O (z) = —120 - —

A (=) (n —1)!

F () = forall n ezt
mn
{by induction}
1 n+1 — 1)
F(2) = M forall nezt

n

Thus, the Taylor series for Inz about z =2 is

Inz=1In2+ Z

If ap =

n— oo

(=)™ (n—1)l(z —2)"
el 2" !
(=nrti(@—2)»
=In2+ Z T
(D" -2
n2n

, then
(m _ 2)n+1
(n+ 1)2n+1

n2™
X
(x—2)"

an+1 ‘

an, n—oo

|z — 2| n
— X
n+1

= lim

n—oo
|z =2
2

|z — 2]
convergence occurs for — <1
= |z —2] <2
= —2<zr—2<2
= O<z<4

and the associated radius of convergence is 2.

L a f(ZC) — 92T — (eln2)w :ewln2
2 (I}3 2174
71+z+—+§+—+

(z1n2)2 N (£1n2)3

But e”

T=1+zln2+

2! 3!
zln2)4
L @2t

4!
> | (In2)™
= 2% = n

(In 2)n+1mn+l

= lim

n!

n—oo

(n+1)!
In2 x z
n+1

||

= lim
oo

n+1
=0
converges for all = € R.

o0 n
b Likewise 77 = 3 {(hﬂ) :|m”

n!

- )

The radius of convergence is 1.
1 oo
i — = —1)"z3" for |z| < 1.
5~ LD a
The radius of convergence is 1.

1 oo
. 3n
i —— = g T for |z| < 1.

The radius of convergence is 1.

(In 2)7zm

I 3
b 3dm: (1—z3+w6—:c9+....)dz
o 1tz 0

:C4+:E7 w10+
= |z — — _—
4 7 10

1
3
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d If f(z) =sin(e™™)

1
R L1 1 1 , B -
118 T3 Ix3t Tx37 10x310 (@) = cos(e™) x —e™*
1 = —e %cos(e™)
where m ~ 0.0000017 f”($) —e Cos(efz) — 57"‘:(— Sin(efz)) X —e T
: =e Tcos(e” ) — e Tsin(e”®)
1
/ 7 dr ~ 0.3303 (to 4 d.p.) f(0) =sinl, f'(0) = —cosl, f"’(0)=cosl—sinl
0
/ " 2
6 From Example 43, the Maclaurin series for In(1+2z) is defined Now sin(e™®) ~ f(0) + m + M
for |z] <1 and 1 2! 5
22 23 2t 4P ~ sinl — [cos 1]z + [cos 1 — sin 1] z
1n(1+x):x—?+?—q+?— . 2!
) 5 . ~ 0.8415 — 0.5403z — 0.15062>
In(1 - 2) = (—a) - C N ) M )
2 3 4 8 alIf f(z)=(1+=x)P, then
(=2)5 @) = p(1+2)P L,
5 f'(@) =p(p - 1A +2)P2,
22 23 2t b
SRR T s :
for |z| <1 fP @) =plp—1) .. (p—k+ DA+ )P
So, for |z| < 1, S f0)=1
1 4 =
ln< +3U):ln(lJr:E)fln(lfz) Fo)=r
= 710 = plp—1) = =2
=2z + 23:3-1—%175—}—%;1:7-{-.... (p—2)!
p2n+l :
Z (2n+1) f(k)( 0) = p!
Letting = = %, (p—K)!
1 (1)3 (1)5 S (+a)P
3, \3 3 plp—1) plp—D(p—-2)
n2~2| =+ + = 2 4.
n 1 3 5 1+ pz+ o1 ° + 3l z” +
plp—1)....(p—n+1)
In2 ~ 0.693 + o z" + Ry (x : 0)
7 a The Maclaurin expansion for e® is where Ry (z:0)
>, " 2 3 4 —1)..(p— (n+1)+ 1)z T(1 +c)p—n1t
D e B _pp—1)...(p—(n+1) ') (1+c)
= 2t 3t 4l (n+1)!
X (—z)™ 2 3 4 for some ¢ between 0 and x.
ie*zzz(w) S T .
= 2! 3! 4! Now consider
0 (_g.\n 2 97,3 X plp—1)....(p—n+1)z" &
ii e—Sz:E(?m) :1—3:c+9i— Tx Z o :Zanz".
= 2! 3! n=0 :
81z4 When convergent, this is the Maclaurin series of (1 + x)
4! b By the Ratio test:
i e—(2k—Dz _ Z [—(2k — 1)9”]” lim |&ntl
n— 00 an
:L_g R pp—1)....(p— (n+ 1) + 1)zn+!
b Now sinz =z — 54—5—7—% — hm (n+ 1)!
- sin(e™®) n— o0 plp—1)....(p—n+1)z™
|
e 1,-3 o5 1T n
=€~ §e % + ppe TS — gpeT T 4 L ( )
. z(p—n
zlfmf5(173x)+ﬁ(175m)7ﬁ(177x) = lim |————
~ 1 1 1 3 5 7
N[1_E+1_20_5040]+[_1+E_Fo+5040]"3 42
~ 0.8415 — 0.5403x = |z| lim 1" = ||
™) ~ 0.8415. et I+ o

¢ When z is very close to 0, sin(
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this series converges for |z] <1 .. R=1.

o0
¢ From b, for |z| < 1, since Z anx™ converges we have
. n=0
lim anpz™ =0,
n—oo

— — n
lim plp—1)....(p—n+ 1)z

n—oo n!

=0, for |z| <1.

Now for 0 < ¢ < x < 1, consider

Ry (z:0)
_ —(n :L.nJrl

_[pe—1) ... (p —n)at!
B (n+1)!

(14 c)p~1
Tt or

For a given x, x and c are constants
(1 +¢)P~1 is a constant.
lim Rn(z:0)

— lm p(p — 1).,..(p—n)x"+1 (1—1—0)1"_1
(n+1)! (1+c)™

p—1 q; p(p—1)....(p—n)z" 1
(1+¢)P71 lim [ T ]

n—oo

n—oo

1
X lim ————
=(14+c)P1x0x0=0
Thus (1 + x)P equals its Maclaurin series for 0 < z < 1.
EXERCISE L.3
1
1 a f(z)=——==(1—22)"! where p=—1
1—x2

But (1+z)? = i plp—1)(p—2)....(p—n+ 1)z™

!
n—0 n:

>

lz| <1

(=1)(=2) ... (=n)(==*)"

n!

fz) =

[M]#

s |—a:2| <1

3
Il
<}

(—1)"nl(—1)"z?n
n!

Il
NgE

R |m|2<1

3
I
o

I
]38

22, x| <1
0

tar2 et a8+, lz] <1

The radius of convergence is 1.

= 3

bIf f(o) = ——. f(@) = (1+2%) "

= (= - — —n $3 n
ey = 3o ENEDED) - n)E)

oy S |a:3|<1

(—=1)"nlz3n
n!

Mz 10

. JzP <1

oo
Z (—1)”%3", lz| <1

n=
=1—-a34+2 2% +22— .., |2/ <1

The radius of convergence is 1.

¢ f(z)=

3 = (1 _Ig)_l

—

(=1)(=2)(=3) ... (=n)(=z®)"
n!
(—1)”n!(—1)"m3"

n!

Nk

fz) =

s {fm3| <1

3
Il
o

I
8

. zP <1

3
o

8

23, |z <1

I
<)

n
=1+4+a34+2%+2%+22+ ..., |2/ <1

The radius of convergence is 1.

a fl@)=(1+a>)""

> (_ _ _ _ 2\n
) = Z( D(=2)(=3) ... (=n)(z7)

|
n=0 n:

© (1)l m2n
= g —( ) ' , |zl <1
n=0 n:

oo}

=Y (-2, |z| <1

n=0
=1-a?+a2* -5 +28— .., 2/ <1

S |m2| <1

with radius of convergence 1.

x
1
arctanz — arctan(0) = / —dz, [z <1
o 1tz

T o
= arctanz — 0= / (Z (—1)":62”) de, |z| <1
0

n=0

oo x
= arctanz = Z(—l)"/ 22" dz, |z| <1
0

n=0
0o :172"+1 z
= >3 el <1
n=0 n+1
oo (71)".’,52"-1—1
=5 5 T lz] <1
n=0 n+
3 x5 27 2P
tanz =@ — — 4+ — — — 4+ — —
arctanz = x 3 + 5 7 + 9
valid for = €]-1, 1[.
6 10 14
i arctan(z?) m a2 — 42T
rctan(z?) ~ 3 + 5 -

~d L L1
X33 ts 15 0
~ 0.294

Check: Calculator gives &~ 0.298
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.(—[2" 1)( 22)n

5

[t <1
(=D)"[1 X 3X5 X .... x (2n — 1)](—=1)"z2"

s

0 2" n!
lz]? < 1
[1x3x5x...x(2n—1)]z%"
ZO o n' lz| <1
n
where

[I1x3x5x%...x(2n—1)]

2X4x6X...X2n
=[1x3x5x..x(2n—-1)]x

2X4X6X...X2n

~ (2n)!
" anp)
> (2n)! x2"
Th - , <1
w @)= g

72411( ')2 , x| <1

and the radius of convergence is 1.

b arcsinz — arcsin(0
)= / V1— :c2
. = Qn)' 2n
= arcsinz — 0= Z (a2 n')2 dz, |z| <1

& 2n)! N
= arcsinz = » ﬁ/ ?dz, |z <1
0

n=0 22n (n')Q

. > (2n)! g2+l
= arcsinr = nzz:om X m, ‘wl <1
with R=1
c If x= %,
2n+1
Lo s e(3)
arcsin (3) = 20(11)2 () + Z C 22n(n)2(2n + 1)
T 1 (2”‘)'
i Z (2401 (n)2(2n + 1)
1 (2k)!
=1+
2 Z 24k+1(k')2(2k+ 1)
(2k)!
ap =

24k+1(EN2(2k + 1)

EXERCISE L.4 I

oo
1 aLet Vo+1= ) anz™ for |z <1

n=0

0o 2
z+1:<2anm”>,|m|<1
n=0

b Using the binomial series with p =

z+ 1~ (ap + a1z + asz? + a3:53)2, lz| <1
~ al + [2a0a1]z + [2a0a2 + a?]z?
+ [2a0a3 + 2a1 az]ass
{using the first 4 terms only}
By equating coefficients we get a02 =1, 2apa1 =1,
2apaz + a12 =0, 2apa3 + 2a1a2 =0
Thus ap = £1, but ap >0, .. ap=1
Consequently, 2a1 =1 = aj = %
and 2(1)ag+ =0 = az=-%
and 2(1)az +2(3)(-3) =0 = as=15

Thus \/w—&—lzl—l—%w—%ﬂ—&-l—lﬁx?’, lz] <1

1
5>

\/Iﬂ_ﬂz(ler)%
= (2) (-

= m+1:a0+z

N
SN—
|
ol
SN—
/N
7
IV
3
N~—
8
3

n!
n=1
Ifwelet =0, 1=a0+0 = ap=1
Thus Vz + 1
LB BEDE B

1! 2! 3!
{using the first 4 terms only}

= T+1~1+1 :rf—z +1—6x3

a From Example 45,

o (2k)! p2k+1

arccosz = 5 —x — Zm, lz| <1

k=1
~ T _p_Llp3_ 3.5
N5 —T— Tt — g, [zl <1

2 3
and e* ~1+x+ % + % with infinite R

e” arccos

L s 1.3 3 .5
142+ —+ — (E,m,_x ,_m)

£ (5t (B ) (B 1)

Q

Q

b Now arccosz has R =1 and is defined for |z| < 1.

e” has infinite R.
= e%arccosz has R =1 and is defined for |z| < 1.

2 4 6

T T T

a cosr~1l——+ —— —

2! 4! 6!

Let :a0+a1x+a2x2+a3x3+a4x4+,...

cosx
z2 gzt g0
then z= (11— —+ — — —

X (ap + a1z + a2x? + azz® + o)
= xxap+aix+ (a2 — %ao]ac2 + [a3 — %al]mB
1 1 4 1 1 5
+[aa — 5a2 + 37a0]z” + [as — 5a3 + z7a1]z
Equating coefficients gives
1 1
ag =0, a1:1, a2—§a0:0, a3—5a1:0,

aq — a2+ a()—O and a5f%a3+%a120
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1
= a0 =0,a1=10a2=0 a3=3, a4 =0, a5 = 35

5

T
Thus zw+%x3+%m
cos T

b cosz has R = oo and is defined for all = € R.

equals its full Maclaurin series expansion for all
cosw

T
x € R such that is defined.
cos T

That is, for = € R, a:;é(2k+1)g, k€.

R a3 xb
L sinx =z — — 4+ — —.... and
3! 5!
-1 x? x4
cosx =1— o + T
Let tanx = ag + a1z + agmz + a3x3 + a4z4 + ...
sin x )
as tanz = , sinx = cosxtanx
cos T
3 x®
T T E T E T
_(; z? " x4 ( 5 )
= — o 4! — ag +ai1x +azxx” + ...

=ap + a1z + (az — %ao):c2 + (a3 — %al)x‘n’

+(as — gaz + gao)z® + (a5 — ga3 + 5701)z° + ...

By equating coefficients we get

5
=0, a1=1 az=0, ag=—, axa =0, a5 = —
aop al a2 as 3 aq as 24
t ~ —z3 + —uxb
anx x+3.7c +24m
o Zk
5 e = Z o or all z
k=0
o (:0\k
0 __ (20)
ael=>%" X
k=0 :
L 202 303 et 560
LT T T TR TR
62 0+ oS
B R
03 05 97
+ 4|0 5—'—5 ﬁ-i_ ]

b e = cosf +isinf

2 3 x4

T
T —_ P —_—
6 aef=1+x+ 21 + 30 + m + ...
2 3 4
Now for = > 0, —
e’ —(1+x) >0 forall >0
= e >1+x forall x>0
b For wy > 0 forall k,
1+ up < e%k
(I+u)(d +u2)(I+us).... (L4 un)
< eMleh2eks  eUn

— eU1tuztuzt....tun

n
= H (1 Jruk) < evw1tuztuz+....+un

k=1
¢ As up >0 forall k,
1+wug > 1 forall k.

n oo
H (14 ug) is increasing and as Z Up cONverges
k=1 n=1
n
to L, say, then H (1 +ug) <el
k=1

n
Thus H (1 + ) has an upper bound of e
k=1
n
As H (1 4 ug) is increasing and has an upper bound, it
k=1
converges {Monotonic convergence theorem}

a sinz=0 Y
< x=0+km, kEZ
& x=km k€Z (=1,0) (1,0)
x
sinx
=0 & xz=knm, k€Z, z#0
x
sinx
=0 & xz==m +£27w, +3m, ..
x
b _ 3 zd L7
Slnitfa?—?-‘rﬁ—?—‘r
sinz z2 n x4 26 n
x 31 57
B i ( 1)"3)2"
=y 2n+1)!
—1)n 2n
I ay = D M‘
_ 272 (2n 4 1)!
I i
=0 forall x € R
the tad power series converges for all z € R

{Ratio test}
and the interval of convergence is R.

¢ The zeros of

(2020 £ 2)-

are 4w, £27, 37, +4m, ...

x x z2
d Now <1——><1+—):1——2
T T ™

T T\ z2
(-5t a) =1

T T z2
(1— §)<1+§> =1- 92’ and so on.
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d
. (1—£><1+£)(1—i)(l-&-i)(l—i) S y=2x—2-+ce " isasolution of —y:2z—y
™ ™ 27 27 3 dx
22 22 22 b We need graphs of y =2z — 2 (c=0)
(-2) (i) (i) et
y=2r—2—¢e % (c=-1)

y=2r—2+4+2 % (c=2)

From a, sme has zeros of 4+, +27, 437, ....
z y=2xr—2—-2¢ % (c=-2)

From ¢, (1 - f)(l T f)(l . i)(l 4 i) oo has
T T 2 2

L Y
the same zeros.
This evidence supports Euler’s claim that
Sin @ :17£+$—4 7£+..,. is equal to
T 3! 5! 7!
z2 z2 z? < >
<1 - 7)(1 - ;> <1 - ?) o = i
e Now,
<1—ﬁ><1—ﬁ>_1—12<i+i)+
w2 2 w2 4r? Te=f2
2 z? x 7\40:—1
and <1— ﬁ)(l_ ?><1— W
¢ If (0,1) lieson y=2x—2+ce ® then
:[1,962(L+L)+W] (1_2) 1= —24c = c—3
w2 Ar? 9gm2 Lo y=2x—2+43e 7T
=1 x2<%+$+$)+.... d At (0, 1), %:2(0)41):4
By equating the coefficients of 22 in (1) we get . the equation is y—1 =1
1 1 1 1 z—0
_52_(ﬁ+m+9n—2+““) Thatis, y=—-z+1
ﬂ.2

6 2 alf y=+/a2+c then y2=2>+¢
1

> =T dy
= =% L2y — =2
n:1n2 6 . ydm *
B et BT Tl
n=1 (2n)2 n=1 4’I’L2 4n:1 ’I’L2 dz Y d z
. 1 2 2 Thus y = v/x2 + ¢ is a general solution of o —-.
. (7 dwy
1
=i (2n)? 6 4 b As y(3)=4, 4=+9+t¢
i 1 i 11\2 i 1 S 16=9+¢
and as — = (—) + —_—, . —
—n? o = \er = (2r—1)2 Soe=T
9 9 . Thus y = Va2 +7
oy
6 24 n:1(2n—1)2
2 2 2 3 a ~~~-~ v\ AY
st T T.T NN ¥
s (@n-1% 6 24 8 NN
\\\\\\\:1 /
AN NN NN
EXERCISEM I NN
1 alf y=2¢—2+ce™® then —
dy ~=2~ N xRN\ ) "nWs 1 - -2 &
L — —xT(__ ~~ >~ AN Y VA s -
dm72+ce (=1) \\\\:I\_\l__ /j:////
—x ~~ >N NN A / S S S s =
:27C€ ~ =~~~ N\ A\ ) /7 s s s~
_ ~~~ N N /| / Ve R
=2—[y—2z+2] \\\:\i\—g“//;/:///
=2—-—y+2x—-2 SSSSNNN\Y/ /s

=2z —y
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et I fr RER
////////2 /s 7 /S S S S S S S S LI N B
e ) ;- A A A A A A [
S g PR R
BT I SZZZZZZZ Ll
e 2 =
+ = X
91 Py / NN
——— A s s o N
A A oo oo T ) .
—_—— - = - 7/ /s 7 s S S S SSSSS \
—_ _ L. NN, R
2 vz A A A A VA [IY
2y AR A
s 4 [N A
T
dy b i o is undefined when y = 5z — 10
4k — =10ytanz, z in degrees x
dx dy
T il — =0 when 22 +4y%2 =1
—2 [ -1 Jo ] 1 2 oo PR
—2 ] 070 | 035 | 0 | —0.35 | —0.70 L v pry=50—10
=1 0.35 0.17 0 | —0.17 | —0.35 Ll R
y|[ 0 0 0 0 0 0 o IR
1 —0.35 | —0.17 0 0.17 0.35 o N N
2 —0.70 | —0.35 0 0.35 0.70 3 NI
D — [N T
g2 IR NN
‘/y s s - :A NN N
N & S SRR
- - 1+ - o IR
Tpnt+1 =2Tn +h
2 -1 1 2 Yn+1 = Yn + hf(@n, yn) where h = 0.2
_ _ 4l . - and f(zn, yn) =1+ 22n — 3yn
= Ynt1 =yn +0.2(14 2z, — 3yn)
/ 9l - ~ =0.2+ 0.4z, + 0.4y,
A\
x9g =0 yo =1
=0.2 =0.6
50f k=0, o4 e
xo = 0. = U.
If k=2, 2 vz
fh_4 z3 = 0.6 y3 = 0.568
If k=4, 24 =08 ya = 0.6672
25 =1 ys = 0.786 88
So, y(1) ~ y5 ~ 0.787
8 {xn+1 =z, +0.1
Yn+1 = Yn + 0.1(sin(zn + yn))
<« 20 =0 vo ~ 0.5
x1 = 0.1 Y1 =~ 0.54794
x2 = 0.2 Y2 = 0.608 30
z3 =0.3 y3 ~ 0.68061
24 =04 ya ~ 0.763 69
z5 = 0.5 ys ~ 0.85552
So, (0.5) ~ y5 ~ 0.856
EXERCISE N
d
1 a@-o)Z -1, y4)=3
dx
dy 1
dez  2—=x
! d
= — X
v r—2
y=—Injz—2|+c¢
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But when z =4, y=3
3=—-In24+¢ = ¢c=3+1In2
Hence, y =3+ 1In2 —In|z — 2|

y=In ‘+3
T —
d
b Y 3rsecy =0, y(1) =0
dx
dy
— = 3xsec
dzx Y
dy
cosy — = 3x
ydw

d
/Cosyd—ydx:/?)xdx

x
/cosydy:/&rdm

. m2+
Sin = — C
Y=

But when z =1, y=0

322
i 3 _ 2
Hence, siny = 5 = 5(z® - 1)

y = arcsin [%(w2 — 1)]
d
¢ e¥(20? +4x +1) e (x+1)(e¥ +3), y(0)=2

( e¥ )dyi z+1
e¥+3) de 222+4x+1

eY dy 1 4 +4
—dr=y | —5————dx
e¥Y +3 dx 222 + 4z +1

ey 1 4x + 4
e¥ 4+ 3 222 + 4z +1

ln|ey+3\:%ln’2m2+4x+1’+c

But e +3>0 forall yeR

1
ln(ey+3):1n|2$2+4a¢+l|z+c
But when =z =0, y =2
= In(e2+3)=Inl+c
= c=lIn(e? + 3)

1
Thus, In(e? 4+3) =1In <|2m2 + 4z + 1‘2 (e? + 3)>

= ¥ = 3/[222 +4x+ 1| (2 +3) -3
= y:h’l|:\4/‘2CE2+41‘+1‘(62+3)*31|

dy
d r —= =cos’y, yle)=2Z
Tn v, yle) = %
5, dy 1
sec®y — = —
dr =

d 1
/sech—ydxz/—dm
dx T

2

3

2 1
sec”y dy = — dx
T

tany = In|z| + ¢
But, when z=e, y=% = 1l=1+c
= ¢c=0
tany = In |z|

y = arctan(ln |z|)

1 2 (z+1)—-2(x—1)
z—1 x+1 (z—1)(z+1)
_:c+172x+2
@- D@+ D)
33—z
T a2 -1

dy 3y—uzy (3,$>

dx z2 —1 z2 —1
1d 1 2
~ — {from a}
yde z—1 x+41

1 dy 1 2
— —dzr = ( - )da:
y dx r—1 z+1

Inly=In|z—1]—2Injz+1|+¢
Butwhen =0, y=1 = 0=0-2(0)+c

= ¢=0
Thus, In [y = In |———
us, Inly| =1In
N E 2
| = |z — 1]
e 2
(z-1)
Y= T2
(x+1)

(z-1)

Check: When x =0 and y = w112
T

then y = —1
which is false.

—(z—1
When =z =0 and y:ﬁ

th =1
EEEE en y
which is true.
11—z
Hence Yy = m
d—T xT—R, t>0
dt
dT
From a, — =k(T — R)
dt
1 dT
[ 3
T—R dt

1 dT
—dt= [ kdt
T—-R dt
1
dTl'= [ kdt
T—-R

In|T—R|=kt+c
T — R = +ektte
T = +e%* + R
T=Ae"+ R .. (1)
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b Butwhen ¢t =0, R=18, and T = 82 5 by AP:PB=2:1
82 — 18 = A€ - Ais (3z,0) and
= A=64 Bis (0, 3y)
Thus (1) becomes T = 64ebt 4+ 18 ... (2) 5
But when ¢t =6, T = 50 @ P(z,y)
50 = 64¢5% 4 18
" 64e5% = 32 - ©) .-
6k _ 1 A T
e’ =3 v
1
k 1\35
e’ = (= 3
) : L4 __OB_T3¥ _ —y
Thus (2) becomes, T = 64 (%) 518 o dx OA 3z 2z
_: ldy -1
or T=64x2 6418 Som ==
. y dr 2z
Now when T = 26, 26=64x2 ° 418 ) ldy 1 1,
_t o y dx 2|z
L 64x2 ¢ =8 1
¢ oo Infyl=—5Infz[ +c
“F _ 1 -3
2 =5=2 But when z =1, y=1
t=18 = 0=0+c
_t = ¢=0
and when T = 20, 20=64x2 ¢ 418 .
) 64)(2,% .y Thus, 1n|y|:—%ln|w|:ln|z|7§
o = 1
t . —_
T Loy =t— {as z must be > 0}
27 =2L=2 Vv
_ 1
: t=30 Check: When =1 and y=—, y=1
So, from ¢ = 18 to ¢t = 30, T decreases from 26° to 20°. \/51
This takes place over a 12 minute time interval. When z =1 and y = —7, y=—-1 %
T
1
Y= Jz
] Gradient of [OP] = Y d
z m
. 6 a —_—xm
gradient of tangent at dt
P(z, y) is I . d_m — km
Y oodt
;l_y __r - 1.dm
v Y T omodt
- > 1d
QN —d—Tdt:/kdt
m
In|m|=kt+c
Hence, y E =T |m‘ — hktte
/y@da@*—/xdm o m=etel!
de som= At (1)
/ydy:—/a;dx Butat t=0, m=mqg = mg=A
(1) becomes m = moek?
ﬁ B 7£ e That is, m(t) = moeFt ... (2)
2 2 b At t =30, m(t) = %mo
2 2 _
" +y" =2 (2) becomes %mo = moeSOk
Butwhen z =1, y=2 = 1+4=2¢ L 30k _ 4
= 2c=5 5 §
2 2 _ K 4)30
4+ y° =5 - e:(3)30
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t
Hence in (2), m(t) = mo (%) -
Now when m(t) = %mo,
t
mp(0.8)3° = 0.5mg
t
= (0.8)3° =0.5
t In(0.5
N  _In(05)
30 In(0.8)
= t =~ 93.2

It would take 93.2 days (approximately).

dy z—y
dz =z
dy dv
Let y=vz, .. —=—zx+4v
y=v dx dx +
dv Y
Hence 2z —+v=1—-==1—w
dzx T
dv
r—=1—2v
dx
1 dv

172v$ x

1 1
dv = —dx
1—2v x

1
—21n|1—2u|:ln|x\+c

2
In ’1——y = —2In|z| — 2¢
T
-2
In i y’—l—ln’:cz’:—?c
-2
In w yxx2 = —2c
T
In|z(z — 2y)| = —2¢
|x2 — 2my| —e 2
22 — 20y = +e2°
z2 — 2zy = A, a constant
b W_zty
dr  z—vy
Let dy _dv
et y=vxr . —=—2x+0
4 der dz
v z+ovr 14w
r— +v= =
dx z—ve 1—w
dv 1+w

= —v

T
dzr 1—w

dv 1+v71}(17v)_1+v2

dzx 1—v T 1—w

1—v dv 1

Thus, = -

l—i—v2 P
( 1 v )dv 1
— de= [ =
14+0v2 142/ de T
1 1
——dv— 1 =
1+ 02 1+v T

arctanvf—ln|1+vz|—ln|x|+c

Since 1+ v% >0 forall v

1
arctanv = In(1 4+ v%)? +1n|z| + ¢

2
arctan(g) =In|x 1+y—2 +c
T T

£E2+y2

=Iny/224+y2+c

+c

. dyin—m2
de 2y
Let dy  dv n
e =vr . —=—x+v
Y dx dx
n v2z? — g2 vZ2 -1
rT— +v=
d 2z(vz) 2v
dv v2-—1
r— = —v
dx 2v
dv 0?2 —1— 202 —v2 -1
xr— = =
dzx 2v 2v
v dv -1
1402 do
2v  dv 1
—dr=—[ —dz
1402 da T
1n|1+v2|:fln|:r\+c
2
In <1+y—2>m =c
T
2

w+y—::|:eC:A, say
x

22 4+ 9% = Az, where A is a constant

dy dv
a If y= - =
Yy v, e dzil?‘i"l)
d
ay :E_:,_f(g) g(z) becomes
dx T x
dv
z— +v=v+ f(v)g(z)
dx
dv
z— = f(v)g(z
o (v)g(x)
1 d
_'Ufﬂ and so is separable
f)dz @
dy 2z
b If z— =y+e® then
dx
dy y i(l)
dz =z x
dv 1
So, by a =3
r T
1
_dv:/$72 dx
e’l}
x—l
e V=——+c¢
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ALl
—==In|——c¢
T T
1—cx
y:—xln{ }
T
1—cz]t
y:mln[ ]
n =]
=zln
Y 1—cx

EXERCISE O I

d d
1 a —y+4y:12 is of the form —y—i-P(x)y:
dx dx

with P(z) =4

the integrating factor is ef ddw _ ete,
Multiplying the DE by e** gives

641 dy

—Z 4 dye?® = 12¢4
dx

d
= (ye®) = 12¢*
dx _ 1 4x
ye *r =12 (Z) e +c
y=3+4ce ¥
b —= —3y=¢e® has I(x)= ef73dz =e 3

d
6739: _y _ 3ye 3z _ exef?:x

dx

d
—(ye

dx
y673z — ( 12) —2z te

y= 7% —2z+3z + Ce3z

—3:5) — 6—23:

y:—§e + ced®
But when z =0, y=2

—_1 —
2—7§+c = c=

njot

1 5
Thus y = —Eez + 563“”

d
c —y+y_m+e has I(m):efldx:e“”

dx
d
x —y+6zy=$6z+62z
dx
d
—(e%y) = we® + 2
dx

ey = /(ace°c + e¥*) da
:/a:emdr—l-/ez’”da:

For f ze” dr we integrate by parts with:

u =e* v=c
u=¢e* v =1

Q(z)

exy:mew—/ewdm—l-/e%dz

:zez—ez—&—leh—i—c
y—xflJr ze¥ +ce "

c
But when z=1, y=1 = 1=171+%e+—
e

e c

= 11— ===
2 e

62

= c=e— —
2

y—:rflJr se¥ +e” (87%62)

y—mflJr Lle® 4el™ 17%6271

d
d z—y—i-y:a:cosa: e (D)
dx

d 1 zd
_y+ (—)y:cosx which has  I(z) :ef‘” “
dx T

_ nz

d
a:—y—f—y—wcosm

= {same as (1)}

—(zy) = xcoszx

dzx

Ty = /a:cosxdx

We integrate by parts with: {

ry = rsinx — /sin;z:d;z:

=zxsinz — (—cosz) + ¢

u =cosrx v==x
u=sinz v =1

. cosxT ¢
y =sinzx + + -
T

+1)y+oL =2

(c+ly+ort=c—z

1
(er ) =1—a where
I(z)=e ( ) T o emtine _ oz g
T

d 1
zez—y—‘rz ( + )y:ez(z—zz)
dx T

d
ze® d—y +e®(x+ 1)y = e®(z — z2)
x

— (ze®y) = e®(x — 2?)

dx
zety = /ez(a: — %) dx

W =e* v=ugx—2?

We int te b rt ith:
¢ integrate by parts wi { e o =1—2p
ze®y = e®(z — 2?) — fe’”(l — 2z)dz
) : u=e* v=1-2z
We integrate by parts with: > ,
u=e v = -2

ze®y = e®(x — 22) — [e(1 — 2z) — f(—2e“) dr]
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1

T r xe®
2 c
=l-z—-=42-=4 —
T xr xe®
3 3Jr c
=3 —-—x— - B —
r xe®

d -y
a Y_<c 1
dx 3
@ =1 (_e—y @)
dz? 3 dx
dy
= _l,y <
3¢ dzx

d3 dy\? d?
_g:_% —e Y <_y) _;'_e*y_:g
dx dx dx

Il
Wl
®

<
N
/
.
&8
SN—
[

|
&|&
8 V)
o<
~

_ _ _ 1 _ 2
At =0, y=0, 5_3—1_—3
Py _ i dy_,
dz? 3de  °
d3y

T-13-9-%

2 3
Now Ty(a) = £(0) + £/ (0)z + f(O) 5 + (O 5

3!
Ts(x) = —%x + %xz + 8_117"3
1+2e % .
bey_ln(T>’ ey:%_’_%e )
d
yﬁ *—%e‘”
d
y_y:l,ey {from (1)}
dzr
d
dy 1
dx 3eY
d -y
dy_ev
dxr
dy y
a W _, y
dx @t
dy 5
o2y
xda: v Y
17dZ+ - +7Z
dx zdx2 =T G
d2
_y :4
dz2
d? dm
£ =0, etc Y -0
da’ dz(n)
1! 1 _ 1 2
Tp(z) = y(1) + y'(1)(z — 1) + %

{as all other terms are zero}

But y'(m):2x+£ = y(1)=2+y
T

= 1=24y
= y=-1
4(z% — 2 +1)

Th(z)=—-14+1(zx—1)+ 5

To(z) = —14+2—1+22% —4a+2
Tn(x) = 222 — 3z

dzx

d 1 .
b —y7<—>y:2x has I(m):ef =4
x

:e—lnz
:eln3871
1
Tz
1d 1
Ly 1,
r dr x
d
_<2) —9
dr \
g: 2dr =2x+c
T

= c=—-3
y = 2x% — 3z

d
Check: —y:4:573:296+(2:1373):2:1:+g v
dx T

dy 3z —2y
dr x
dy
— =3z-2
dy = d%y dy
1 — —~ _-3-2=
dx T dx? dx
d? d
e Y3 3%
dax? dx
and differentiating again
d2 3 2
Py Ey 4y
dx? da3 dx?
By  d%y
v dz3 dx?
When @ =1, y(1) =0, y/(1) = 3, (1) = 220
=—6
—4(—6
and y""'(1) = % =24
(1) (z —1)2
Ty(a) = v() + o/ ()@ — 1) LDEZDE
n Y () (= —1)3
3!
6(r—1)2 24(z—1)3
=0+3@—1)— @—1)” , 24@=-1

2 6
=3x—-1)—3x—1)2+4(z—1)3
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d 3z —2 2 d 2
b As —y:u:?)f—y then —y+—y:3
dx T T dr «x
2
where I(z):ef;dz
:621nz
— In z2
d
mz—y+21y:3x2
T
d
2 2
—(z =3z
)
x2y:/3x2dx:x3+c
n c
=x —
Butwhen =1, y=0 = 0=1+4c¢
= c=—1
1
= r — —
Y 22

d
4 a cosx—y+ysinm:1, y(0) =2
dx

Differentiating with respect to = gives

d? d
—}\z};—:—i—coswﬁﬁ-/d—z/sh(xﬁ-ycosx:(]

d2
cos:c(d—wg +y> =0 forall z

d2y
= — =
dx2 Y
By dy
and —f = ——
dx3 dx
But when z =0, y=2
dy dy
cos0 —+20)=1 = — =1,
dzr ©) dzx
Py _
dxz2
d3
and —= = —1
dx3

2 3
Now T3(z) = y(0) + ¥/ (0)z + " (0) == + 1" (0) =

2!

= T3(x)z2+w—:c2—%a:3

d
b cosx—erysinm:l
dx

dy ( sinx ) 1
— + y=
dx cosx cosx

where I(z) = ef cos@
_f —sinx da
=€ cos T
— In(cos x)

1

Cos T

dx

=e

3!

(142

1 dy sin x 1

Yy =
cosx dx COS2 €T COS2 €T

i () =
— =sec”
dx \coszx

y :/sechdm:tanm+c

cosx

sinx

Y = CoST +c
cosT

y =sinz + ccoszx

But when =0, y=2 = 2=0+4c

= c=2
. y=sinz + 2cosz
3 Zb
Note: sinx =z — — + —
3! 5!
1 22 gt
cosT = faJrZ
sinx + 2cosx
_ 3 9 2z2 274
Nm—g-‘r;-i- ——2! +—4! + ...

~ .2 1.3, 1 4
~2+x—T 5T+ 5T + ...

which checks with the answer in a.

a For —1<z <1,

—1)z2 —1)(p—2)a3
y:1+pw+p(p ) +p(p )(p—2) o
2! 3!
dy 2p(p— Dz 3p(p— 1)(p — 2)a*

—~Z -0

dz TPt T o 7 31 *
—1)(p—2)z?

:p+p(p_1)x+%+

d —1)(p — 2)a®
W et pp— 1) L HEZ DR 22"
dx 2!
d
dy _dy, Ay
de dz dx
{a sum of two convergent series}
=p+[p(p—1) +plz

p(p—1)(p—2)

ol z2 + ...

+ +plp—1)

where the general term is:

[p(p— Dolp=n) plp—1)..(p—n+ 1)] o

n! (n—1)!
:p(p—l)---~('p—n+1) ((p— ) + njz"

n:
_|plp=1..(p—n+1)
-P n! v
Hence

d O, —1)....(p—n+1)z™
(1+w)£:p+pn2_:1p(p ) Eﬁn L

= py as required
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d
b (14+a) 2 = py
dx
ldy p
yde 14z

1
/—dy:/ P dx
Y 14z

Inly| = pln|l + 2| + ¢, where ¢ is a constant

Since |z| < 1, we have y = A(1+ )P, where A = e°
is a constant.
1)...(p—n+1)z™

0 —
¢ Since y(z)= Z pp ' is a
n!

n=0

solution to the differential equation,

o0

pp—1)...(p—n+ 1™

ya) = - 22D (, LA
0 n!

for some constant A.

Now y(0)=1

1=A1+0)P
A=1
Thus y(z) = i p(p — 1)....53—n+1)mn (4o
n=0 :

forall |z| <1, thatis = €]—1, 1].

REVIEW SET A I

1 Inz and z are continuous for all = > 0
The limit has type 22, so we can use I’'Hopital’s Rule.
In

. m .
lim — = lim
Tr— 00 X Tr— 00

=0

8 |i~2|>—A

{I'Hopital’s Rule}

2 As £ — 0, e*sinz — 0 also

The limit has type %, so we can use [’Hopital’s Rule.

. e¥sinz
lim ——
x—0 x
T o3 X
= lim w {’Hopital’s Rule}
x—0
=1(0) + 1(1)
=1
. 8—2n—2n?
3 a hI'Il _—
n—oo 4 4+ 6n + Tn?
8 2
W T2
= Jm S
n—oo _*_ o
n2 + n +7
_0-0-2
T 04047

2

7

1
b Ifniseven, up = 3+ — 4+ 2n which diverges as n — oo
n

1
3+ —+n[l+(—1)"] diverges
n

. 2n + 13
c lim —=
n—o L\ /6n2 4+ 5n — 7
. 2n + 13
= lim
n— o0
2 5_ T
. 2n + 13
= lim
n— oo 5 7
6+ — — g3
24 13
. n
= lim
n— oo 6+ E _ lQ
n n
- 2
G
_ V6
-3
d lim arctann = %
n—oo
! + 2 + 3 + 4 +
PB+1 2341 3341 4341 77
=3 whichis < Y — =" =
n=1 'I’L3 + n=1 n3 n=1 ’I’L2
> 1
But Z 3 converges {p-series test}
n=1
e n
= converges Comparison test
n; B { }
3x ( 3x )2 ( 3z )3 . .
a l+ + + + .... 1s a geometric
r—2 r —2 Tz —2
. . 3z
series with u; =1 and r =
x — 2
. 3x
the series converges when |r| = 5 <1
z—
[3z| < |z — 2|

132)% < |z — 2
922 — (z —2)2 <0
Bz+z—-2)3z—2+2)<0
(4z —2)(2z +2) < 0

A

+

=Y

|
—
ol f—

= —1l<z< %
Note: The ratio test could have also been used.

i <m?f2)n -

ne0 1—r
1 r—2
= X —
_ 3z r— 2
1 x—2
_ r—2
z—2-3z
_ T —2
T 22 —2
2—x
= “l<z<i
w2 CrcT<ad
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¢ Differentiating the result in b with respect to x:
3x

22 (%) =1 (59)
(&G5))-1aCH)
n(w?iuz)"*l [3(m (w2)2)?2,m(1)]

. |:(—1)(ac+ 1) — (2 —ac)l:|

5

n=0

2 (z+1)2
20"(x?f:z)n_lx (@ :62>2 ‘%[w 131)?]
20 (Z(imz);:l e i 1)2
6 z+ lfx+ﬁ+....:§1#

The series is geometric with w1 =z, r = T—2 but we will
—x

use the Ratio test.

It - " , ani1 _ ontl (l_m)n—l
(1—zx)n—1 an, (1—ax) ™
T
- 11—z
i ay converges for gntl z‘ w <1
n=1 n -2
x| < [1— x|
2> < [1—=2f?
22-(1-2)?2<0
(z+1—2z)(z—14+2)<0
2 —1<0
a:<%
3 5 1,7 $9
7 sm(x):mngryfﬁJraf
sm(azz):azz—ﬁ—&-xlo ﬁ ﬁ—

1 . ( 2) P wS m7 N 5(311 3715 N
sin(z”)de = | — — — - .
0 2 1320 75600

3 4
~ 1 1 1 1
M3~ 33T 1320 ~ 75600
~ 0.310
Check:  GDC gives ~ 0.310268
e M\
8 P(X=ux)= n where x=0,1, 2, 3,4, ...
!
i ef)‘)\x o \T
=e —_
=0 ! =0 !
e et
o0 Am
{as Z — is the Maclaurin series for e>‘}
x=0 !

— 0

9 ab
d
LIk where k=0, £1, £4
der y
we have isoclines z =0, y = +x, y::t%x
d
10 & _ Y
de x—1
ldy =@
ydr x-—1
1d —14+1
tdy =141
y dx z—1 z—1

1 dy 1
— —dx = <1+—)dx
y dz z—1
. Inlyl=z+Injlz—-1|+c¢
But, when =2, y=2 = In2=2+4¢
= c=1n2-2
Injyl=z+In|lz—1|+1n2—2
Injy| —In|2(z—1)| =2 —2

y
n|l—2 —|=z-2
-1 "
Yy _x—2
21| ©
Y r—2
g 4
2z —1)

But x =2, y =2 does not satisfy the negative solution
y=2(x—1)e*2

1
has I(z) = ef_;

_ e—lnz

d 1
11 —yf(—>y:\/5 e

dz T

_1
Tz
ldy 1. _ -
z de x?
i(g) o7
dr \z
y _L
—:/:0 2 dx
T
1
2
2o
T3

Yy =2z/x + cx
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Butwhen =4, y=0 = 0=16+4c
= c=-4
Thus y = 2z/x — 4z

12

yy o |
[ |
[ |
[ |
[ |
(IR \
(B \
(B =
vV /
N~ 700
N2 /A
-/ / [
- Il
vt AraZoa 3 A5 e
Vv STy ooy /L
VAo N YNS=s s
VLV A NN NS
\j
REVIEW SET B I
. 2n —1 1
1 a Ifniseven, u, = =2——
n n
. —(2n—-1) 1
If nis odd, u, = = -2+ —
n

un — 2 if nis even and u, — —2 if n is odd

{un} is divergent {has more than one limit}
(09"

1+ (0.1)™

Butas n — o0, a™ — 0 for 0<a<1

. 0
lim up = —— =

cun=(mm)<

_(n+5)—(n—-1)
vVn+5++vn—1
B 6
B vVn+5++/n—1
where v/n+5 and v/n—1— 00 as n — oo

lim u, =0
n—oo

n2 on3
3n+1 6n2+1
_ M+ n2 — ent — 2n3
T (Bn+1)(6n2 +1)

n2 —2n3

T Bnt+16rZ+1)

1l 9

n

SRl

—2
1i = = —
nl—>moo tn 3 X6

b up, =

Vnt5+vn—1
VRS54 vn—1

Uy =

=

P R
2 3 4 7 i
n+1 n
Now lim ntl ’ = lim —
n— oo an n—oo [N + 1 x™
n
= lim |z] ( )
n— oo n+1
= |z|
a
Thus lim n—“‘ <1 provided |z| <1
n—oo an
(o'} "
Z — is absolutely convergent and hence convergent for
n=1

—1 <z <1 and is divergent for |z| > 1.

X x™ 1
When z =1, Z — = Z — which diverges
n=1 " n=1"

{p-series test}

=2 & (e
When =z = —1, Z —_— = Z , which is an
- n n

n=1 n=1

alternating series with b, = —
n
Now 0 < bpt1 <bp and by — 0
- (="
Z -——— converges
— n!

{Alternating series test}

lim aj = sin (

k—oo

k-1
Since hm ar # 0, Z sin (J> diverges.
o 2k

{Test for divergence}

r 4 r2
1+72

>1 forall r>1

1+r
1+72

WV

\%
NIhl
S | =

it

r=1

> 1
But > — diverges {p-series test}
=17
201
Z tr diverges {Comparison test}
=1+ r2
n )k+1
P
. 1
Consider by, = ———— where k > 3

In(k —1)

Now y = Inz is an increasing function for all x > 0.



204  WORKED SOLUTIONS

1
—— is decreasing for all = >0
Inx

by is decreasing for all k > 3
And, as b >0 forall k>3

n (71)k+1
Sn = ———— converges {Alternating series test
" ,;S In(k — 1) ges | £ }
b Now |S — Si0| < bi1 when S = lim S,
n—oo

{Alternating Series Estimation Theorem}

S — Si0] < ——
| ol < 175

|S — S10] < 0.4343 {4 s.f}

6 The Taylor series expansion of e” is:

171 :82 ac3 JJ4
T TP THLES
2 3
ot _ (@-1% (@-1)
e =14+ (x—-1)+ o + 3l
(2 — 1)

(a:—l)ex_lz(a:—l)—&—(ct—l)z—i-%(x—l)?’
. . dy
7 If y=ax+b is a solution of d—:4x—2y
e

then a =4z —2(azx +b) for all z
a=(4—2a)r—2b forall z

4—2a=0 and a=-2b
a=2 and b=-1

d
8 4 =2xy? —y? = (2z — 1)y?
dx
1 d
Y
y? dx

—1 21,2
=— —xT+c
—1 2
—1
— =z —z+c
Yy
_ —1
v= 2 —z+c
9 Ay
(2,9)
3228
b 1)
V'’ Y 2
A\

The equation of the tangent is y = mx + ¢

Y= e + 322y8
dy _ 2 3 . .
T =y 3z°y® {see Exercise N question 8}
T
dy
Let =vx, SO — = —
y=ow i 't
Hence, 2?2 — + px = vz — 3220323
d
22 @ —32%0v%2°
dx
1 d
—3 —U = *31‘3
vo dx
dv
/v73—dcc:—3/x3dx
dx
v 2 —3z4 "
—_— = c
— 4

|
(NI
N
< |8
~
[ V]
Il
|
lw
8
>
+
o

But when =2, y=1
—3(4)=-12+c¢
c=10
2
r _ 3.4
2 3z% —40
y? 2
y2 _ 222
3z4 — 40
222
Y= YTy
(3z% — 40)

When z =2, y = i\/g = 41 indicates that the solution is

22
3z4 —40°

y p—

. dy
10 From equationa, — =1 at (0, 0)

dx

a has slope field B.
d

From equation b, _0 at (2,2)

dx

b has slope field €.
Consequently ¢ has slope field A.

1 1 400 — P+ P
11 a —+ =
P 400— P  P(400 — P)
B 400
"~ P(400 — P)

dP
b Notice that as P is growing rr >0

P
0.2P(1 - —) >0
400
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P(400 — P)
— >0
400
P(400 — P) > 0

Sign diagram of P (400 — P) is:

0< P <400 ... (%

P P
Now as —:O2P(1——)
dt 00
dP (400—P)
— =1ilp( —
dt 5 400
400 P |
P(400 — P) dt °
1 1 P |
_ R I fi
<P+4007P> g ~ 5 [(fomaj

(1+ ! )dpdtf Ldt
P 400—-P) dt | °®
In|P|+ -5 In[400 — P| = 2t + ¢

But P >0 and 400 — P >0 {from %}

(=) =5+
"\200-P) 5"

P _ %-‘—c
400 — P
400 — P —%713
_—
P
400 _t
— —1=A4e °*
P
400 L
— =1+ Ae °
P
400
P = — people
1+Ae_g
But, when ¢t =0, P =154
4
154 = ﬂ
1+ A
__ 400
__ 400
_ 123
A=
400
P = —————— people
123 .75
1+ g
400
¢ When t =20, P= ————— =~ 389 people
123 4
1+76

t
B

d As t -0, e — 0

P — 400 people

12

0o $2
a = -
f(x) 2=2:1 1522
= (0?
fO0)=) —+—F =
z=2:1 (1+(0)2)
p— - 0
= ;F
=0
1+ 22
C () e
C1+4a2? [ a? N z2 N z2 N
2 | 1+4422 (1+ac2)2 (1 +m2)3
1 +
+ 22 1 + 22 (1 +ac2)2
N 1+:v2 (1+x2)2
_ i 1
=o1+a?
= Z'r’ where 7= —5
i=0 1+
¢ The geometric series is convergent if Ir| <1
1
— <1
|1+
Lol< 1422
1<1+2a?
0 < ?
Sz F#0
f(x) is convergent for all = # 0 and by a f(z) is
convergent for z = 0.
f(z) = T +m2 ZO T2 is convergent for
all z e R.
d For =0, f(0)=0 froma
For z # 0,
z2 >0
@)=
2
1
= 1 _T_ 2 (1 — r) {Geometric series}

Il
==
+18,
8
V) V)
—— 7N N
—
8 [+
e
(V]
'
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- Iy > y=f(z)

A
=Y

REVIEW SET C e
1 an—\/n2+n= (n—\/nz—‘rn)

n? — (n? +n)

n+\/n2+n

n —+ \/n2+n
n+\/n2—+n

-~ -n
i fied
n n
lim (nf\/nQJrn) = lim -
n—00 nﬂoon|:1+ /1+l
n
) -1
= lim ———
n— 00 1
T+4/1+-
{since n # 0}
-1 1
= —— {since lim — =0}
1+1 n—oo N
—_1
2
b Now 3" <3" 42" 3" 43"
1 1 1
(3n)n < (3n+2n)n < (2><3n)n
1 1
3L (3" +2™)™ <3x2"

1
where 2™ — 1 as n — oo
1

Thus lim (3" +27)™ =3 {Squeeze theorem}
n—oo
an
¢ As lim — =0 forall a >0 {Theorem},
en
lim — =0
n
d Let up =(—1)"ne " =(-1)"—
en
. n
Ifniseven, up=— —0" as n — oo
e’I'L
. —n _
Ifnisodd, wup,=— —0" as n—
en
lim (—=1)"ne "™ =0
n—oo
x L L
2 For Z?)T we let ar =37
r=1
Now lim a,=3°=1+#0
T—00
> 1
> 37 is not convergent {Test of divergence}
r=1

A

11
In(n2)  2Inn
o3 DIR= )
71,2::2 In(n?) 2nz=:2 In

1 1
— < — forall nez*
n Inn
> 1 > 1
=< —
a—omn o lnn
01
But > — diverges {p-series test}
n=2 n
> 1
= > —— diverges {Comparison test}
n=2 Inn
e 1
Thus ——— diverges {from =*
;::2 n(nd) ges { }

a We use the Limit Comparison test which states:
“If ap, >0 and b, >0 forall n € ZT andif
b .
lim - = ¢ where c is a real constant, then a, and b,
n—oo an

either converge or diverge together.”

Suppose lim a, = L and consider b, = a,
n—oo b
As an >0 and a2 >0 and —= =an,
b an
then lim — = lim an =L

n—oo An n—oo

oo o0
= both Z an and E b, converge
n=1 n=1

{Limit Comparison test}

converges ... (x)
n=1
x, 1\? & 2a 1
R
n=1 n n=1 n n
o0 oo o0
2 an 1
= —9 = 4 -
n2:21an r;::l n 712::1 n?
—— —— ——
) @ 3
(1) is convergent {from %}

[ee]

(2) is convergent as Z
n=1

a oo
Tn < Z an {Comparison test}
n=1

(3) is convergent {p-series test}

o 1 2
Thus Z (an — —) converges.
n

n=1
b No, we can only apply the Limit Comparison test if a, > 0
for all n.
(="

- v
Z a2 is divergent.

n=1

For a counter example, consider a, =

(oo}
Z ap, 1is convergent, but
n=1
1 r+1—=x
z+1  z(x+1)
1
z(x+1)

1
T
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1
z(z+1)
If #>1, f(z)is > 0 and is continuous and

| , b1 1
— ! dr— iim (— - ) da
. x(x41) b—oo [ \z  x+1
. b
= blgr;o [lna: — In(z + 1)] L
z b
= lim [ln( )}
b— oo x+1 1
= lim (m( b >7ln(l))
b— oo b+1 2

b Consider f(z) =

1
= lim | In T +1In2
b—oo
1+5
=Inl+1n2
=1In2
i 1
Hence, ——— is convergent {Integral test
71;177'(“4‘1) £ {Inieg }
c i Sn
n 1
Emn
n
1
:E— {from a}
=1t +1
1
— (1 1l 1 -
_(1+ ) (2 1>+<3 3+1>
ot () + ()
n—1 n—1+1 n n+1
1
—1/+/%/ A+K- }/+/+741 %W]é

n+1
_ 1
n+1
ad 1
ii lim S
2Ty A
= lim (1——)
n— oo +1

=1, since lim
n—oo N + 1

flx)=In(l+z), 0<z<1
fa) = = = (40
(@) = 101 +2)72
@) = (C1)(-2)(1 + )8
FD (@) = (~1)(-2)(-3)(1 + )1
S (@) = (~1)(~2)(=3) . (—m)(1 4 7))
frn) gy = LD

(14 z)ntl

" (=1)"n!
Thus f( +1)(C) = W
Now In(1+ z) = Tp(x) + Rn(z : 0)

first n terms
of Taylor series

f(n+1)(c)a?n+1

where |Rn(z:0)] = CE

and c liesbetweenOand 1 = 1<1+4+c¢<?2
n! x|n+1

(1+c)ntl (n+ 1)

T ntl g
:(1+c> n+1

z<land 1<1l+c<2
<1

Thus |Rn(z:0)| =

But 0 <

= 0<
X Te

|Rn| < ——

1 n+1
{as ( z ) — 0}
n+1 1+c

7 1—ac+ax2—a3+a* —a®+ ...
up =1 and r = —x

is a geometric series with

u1

So, its sumis ~—— for |r| <1
1—r

= for |z| <1
1+

[ee]

Thus Z(—z)":
S

dt/—d
0 n=0

(_1)n/ t"dt = [In(1 +t)]0
0 0

tn+1 T
(=)™ |: :| =In(l+z)—Inl
0

for —1<z<1

8

MS:..

0 n+1

n

0o (—1)”:Bn+1
In(l1+2x) = —_—
n( x) nz::o ——

T Ty Ty Ty T

d
8 —y:foy and when z =1, y=2
dx

Now Zpt1 = 2n +0.1 and yn41 = yn + 0.1f(xn, yn)

=yn +0.1(xn — 2yn)
= 0.1z, + 0.8yn

z0 =1 Yo =2

z1 = 1.1 y1 = 1.7

xo = 1.2 y2 = 1.47

r3 = 1.3 y3 = 1.296

x4 = 1.4 yas = 1.1668

r5 = 1.5 ys = 1.07344

ze = 1.6 ys = 1.008 752

ye ~ 1.009 {to 4 s.f.}



208  WORKED SOLUTIONS

9 a If V is the volume of water remaining then 4 — V' has dv 1
: v—dzx = —dx
escaped. dz >
¢ v
v 5 = In|z| + ¢
. hm 2
T y—2:21n\x|+20
T
Im T 9 5
i 2m ooyt =2z%(Inlz| + ¢)
%
2 ..
m \ V = volume remaining 1 % + (cot x)y — cosz has I(m) _ ef cot x dx
d & cos T
E(4—V)o<\/ﬁ :efmdw
dv 1 _ eln(sinz)
Tat kh? =sinx
. Y .
dVv L SINxT — + COST X Yy = SINT COST
— = —kh? m®/min dx Y
dt )
b But V=2x2xhmd E(ysmm):gslnlt
v =4h ysinm:%/sin%vdm
av. dh kh%
dat — dt o, ysinz %(%)(—cosZz)—&-c
ﬁ—fﬁh% ysinx:—%cos?m—‘rc
dt 4 But when z =%, y =0
dt 4 1 )
¢ Fromb, — = ——h 2 S 0=—gcosm+ec
dh k ) )
2
t:f%hTJrc ysinmz—%(cos?w—&-l)
2 —%(ZCOSQ x)
8 G y=—— <
t:—z\/ﬁ-i—c e (D) sinx
S ) . cos? x
Butwhen t =0, h=1 = 0=7E+c . y__QSin:c
8
- = k REVIEW SET D I
8
Thus t = E(l —Vh) ... {in()} 1w 3XBHXTX.o.X(2n+1)
3 " 2x5x 8% ... x (3n—1)
and when t =2, h=081 = 2= E(O.l) . om 41
Consider a, =
8 20 3n—1
R 2n+1)+1 2n+1
S Qn4l —an = -
t =20(1—vh) {in(2)} 3n+1)—-1 3n-1
when h =0, t =20 min 72n+3_2n+1
n+2 3n-1
_(2n+3)Bn—1) - (2n+1)(3n +2)
10 W _2z. ¥ (Bn+2)(3Bn—1)
dr vy =« 767‘?—5—%—3—6412—%—2
Let y =wvz, so @:@x—i—v (3n+2)(3n — 1)
dr dx _5
L T Grnt2)Bn-1)
dx VT T
ap4+1 —an <0 foralln
dv 1 ]
—z+y=—-+y . apt1 < an forallmn
dx L .
4 . {an} is strictly decreasing
v
”a = z = %, %, %, .... decrease
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Hence, u, < (—) (%) , for n >3
3
2

In fact 0<un<( )(Z)
7

where (—)n—>0 asn—oo {0<c<1l = c"—0}

8

Thus lim up, =0 {Squeeze theorem}
n—oo

oo ()] (1) 3

{cos20 = 1 — 2sin? 0}

ino 1 1
Umgymﬂgu:1mme:5-md9=<
—0 n n

lim wup, =0(1)% -1

n— oo
=-1

<
2 Consider —dz
L z(lnz)?

I
g

I I
Te =
8 g e

o e —
=] N
I8 <
— = =
| 5
= 8
—_ ~—
o

[\V)
/N
8| =
N———

=¥

8

Il
g
~
L
+
|-
~

:EE
oo
dx is convergent
/2 z(In a:)2 &

is convergent {Integral test}

X (xz — xr —3)"
3 Z( as nzi( 3)
n=1 n TLE
8
_ 3)yn+l 2
i ”*%: T Gk O
(n+1)2
3
2
=1m1(x7$< o )
n—oo 7’L+1

| w

3

n 2 —
Now as n — oo, ( ) —12 =1
n—+1

lim

n—oo

— o - 3|

an+l‘
an

X (z—3)"

Hence Z —_—

n=lp? = —l<z-3<1

= 2<x<4

is convergent for |z —3| < 1

Case = =2

e’} —1)"
We have Z( )

n=1

1 . ..
= where b, = — is positive and
n?2 n?

decreasing for all n € Zt and lim b, =0
n—oo
(="
3
1,3
Case z =4

8

is convergent {Alternating series test}

n

o0
We have Z

n=1

—nll = which converges as p > 1 {p-series test}
i(w—$"
3
n=1 nE
So, the radius of convergence is 1 and the interval of convergence
is € [2,4]

n)"has (=) = (2 '
An = = | —
+5 " n+5 1+2

k. n
where lim a, = — 75 0 { lim (1 + _) = ek}
n

n—oo n—oo

is convergent on 2 < x < 4

go <”

o0 n n
z ( ) diverges {Test for divergence}
n+5

The Taylor series for f(z) = e* is:

:f(0)+mf’(0)+w+ +m

2 o nl
FHD) (e)antl
B
where f(M(0)=e% =1 and [t (c) =ec
2 23 Zn ecgntl
So, e® =14at o+ bt = i

where c lies between 0 and x.



210 WORKED SOLUTIONS

Thus when = = 0.3,

(0. 3)2 (0.3)3 (0.3)"
=1+0.3
* + 2! 3! Foet n!
e€(0.3)n 1
W where 0 < ¢ < 0.3
) 60.3(0'3)n+1
So, we require W < 0.0005
n !
{giving € its maximum value}
(0.3)n+1
(nTl)' < 0.00037
(0.3)* L
If n=23, I = 0.00034 which is close to 0.000 37
0.3)3
But ( 3') =0.0045 soweuse n=4
2 3 4
0.3 (0.3)=  (0.3)° (0.3)
Thus e =~ 14+ 0.3+ o1 + 30 + ]
~ 1.350

d
6 xyﬁ:1+m+y2 where y(1) =0

dy dv
Let y = — = —
et y =z da dww—l—v
dv 2 9
m(vx)(—erv):lerJrvm
dx
5 dv
a:vd——&-%:l—l—w—l—%
T
dv -3 —2
vdmim +x

—2 —1
v -1 1 N
. —=—=——+c
2 222
2
Yy —1 1
— =—5 — — +t¢
22 222
y2 =—1— 2z + 2cz?

But when z =1, y =0
0=-1-2+2¢
2c=3
Thus 32 =322 — 2z — 1
7 a The Taylor series for f(z) =e* is:

12 123 z™
ecanrl

(n+1)!

f(n+1)( ) n+1
where Rp(z:0) = CEm] =

Ifwelet z =1,

e¢

=1+1 —
e=1+1+= +,+ R

3!
where c lies between 1 and 0.
n 1 eC
e= — 4 ——— 0<ec<1
ok (n+1)!

1
=+
n!

n 1 ec
2:: W 0<c<1
b i From the result in a,
60 n 1
(n+1)! 2_: (n+1)'
1 LA | 3

——<e— Y —<—
(n+1)! kZ::Ok! (n+1)!
il Multiplying this inequality by n! gives

. nl 3

<en!— < —
n—+1

n+1 k:OH

3 = n+l1>4

3
<
n+1

n!

Now n >

e

n

<enl— Y —
n+1 e i—o k!

/
oo

¢ Suppose e is rational, that is, e = where p and g are

positive integers.

1 p “onl g
< =n!- — < =
n-+1 q kz::Ok:! 4

We now choose n sufficiently large so that n > q.

n! . .
p — s an integer
q

n! . .
Also o is an integer as k < n

n
But O<L<gn!— Zﬂ < % < 1 which is a
n+1 q k!
contradiction as no integer lies between 0 and 1.
the supposition that e is rational is false.
= e is irrational.

d 3 7 de
L (—)y:8x4, y(1) =0 has I(0) =) 7°
dx T _ 3lnz
e
= 3
d
ﬁJrszy—Sx
d
E(xsy)*sx
m3y2/8w7
88
3
r'y=—+c
Y78
5 C
=z° + —=
Yy 23

But when z =1, y=0 = 0=1+c¢
= c=—1

1
Thus, y = z° — -
T



WORKED SOLUTIONS 211

. . d
9 The gradient of the tangent at P is d—y
x

3
But (3z, 0) and (O, ?y) lie on the tangent.

3y
dy_="°_ y
de  0—3z 2z
ldy 1
yde 2z
1d 1
/——yd:c:—%/—da:
y dx T
: ln\y|:7%ln|x\+c

2In|y| + In|z| = 2¢
In(ly|? |z[) = 2¢

Now (1, 5) lies on the curve

In25 =2¢
v |v? |l = 25
y?x =25 {since x>0}
)
V=&
10 4
MY y=f(z)
P(z, y)
m
as
-
< X7 0 ] > >
- N " T
a3
v y=—f(x)
a al = az {reflection property}

But a1 = as {as [PM] is parallel to the z-axis}
az = as
But 0 =ai1 +ag

0 =2«

{exterior angle of A theorem}

d
b The gradient of the tangent at P is d—y
i
dy

el tana as the tangent makes an angle of o with
x

the z-axis, and tana =

2tan o
M ey i

RN’
Y {in AOPN}

2xtana = yfytan2a
ytan2o¢+2:1:tana—y: 0
—2x 4 (/422 — dy(—vy)
2y
22 +2\/22 4 y°
2y
Vo +y? -z

= ——————— {since tana >0}
Y

tana =

d d
d Let r2=2x24+y2 so 2r—T22z+2y—y
dx dx
dy dr
y—=r ——2x
dx dx
dy r—=zx
But frome¢, tana = — = ——
dx y
dr
r——x=r—=x
dx
dr
— =1
dx
r=x+c
Thus xz+y2:z/z+20x+c2
y2:20m+c2

1
e y = f(z) is half of a parabola since = = o y2— % where
c

x is a quadratic in y.

d
1 d_i =ylnz, y(1)=1
d*y dy 1 y
2 2 Z) = 2, 2
dax? dz nz—i—y(gj) y(nz) +w
dy
By dy 9 o
2ylnz  zylnz —
:y(lnac)SJr L + Y ) y
T T

y() =1, y'(1) =0, ¢"(1) =1, y"(1) = -1

T3(z) = y(1) +y'(1)(z — 1) + M

2!
LYW=
3!
B (z— 1)2 (z — 1)3
T3(z) =1+ o i
b Hence, y~1+ %(z —1)2 - %(m —1)3
yz%7%x+x27%x
1d
4 il =Inz
y dx

Inlyl =zlnz—z+c
Butwhen z=1, y=1 = 0=0—-1+4c¢
= c=1

Inly| —Inz®* =1-=z

ln<i|) =1-
:r$

M _ elfz
zT
y=a%'""" as y>0
Check: When = = 1.2, fromb, y~ 1.0187

frome, y=1.0190 v
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INDEX

absolute value function
absolutely convergent
Algebra of Limits Theorems
alternating series

Alternating Series Estimation Theorem
Alternating Series Test
antiderivative

Archimedean Property
binomial series

bounded function

bounded sequence

closed interval

Comparison Test for integrals
Comparison Test for limits
Comparison Test for sequences
Comparison Test for series
conditionally convergent
continuous function
convergent integral
convergent series

definite integral
differentiable function
differential equation

direct proof

discontinuous function
divergent integral

divergent series

equivalence

error

essential discontinuity
Euler's Method

Fundamental Theorem of Calculus
Fundamental Trigonometric Limit
general solution

geometric series

harmonic series
homogeneous differential equation
improper integral

indefinite integral
indeterminate form

infinite series

initial value problem

integer

integrable

Integral Test

integrand

integrating factor
Intermediate Value Theorem
interval of convergence
isocline

Lagrange form

left-hand derivative
'Hopital's Rule

79
61
76
78
76
36
11
100
24
60

51

69

61

68

79

20
50

66

41
25,34
105
131
20
50

66
136
75

20
109
45,46
18
106
68

73
114
50
36
18, 29
66
110

41
70
36
117
23
85
108
91
26
29

limit

limit laws

limit of a sequence

Maclaurin polynomial
Maclaurin series

Mean Value Theorem
Monotone Convergence Theorem
monotone sequence

natural number

open interval

nth partial sum

particular solution

partition

power series

product of series

proof by contradiction
p-series

radius of convergence

Ratio Test

rational function

rational number

real number

removable discontinuity
Riemann sum

right-hand derivative

Rolle's theorem

separable differential equation
sequence

slope field

Squeeze Theorem

Squeeze Theorem for sequences
Taylor polynomial

Taylor series

Taylor's formula with remainder
Taylor's Theorem

term

Test for Divergence

Theorem of Absolute Convergence

Triangle Inequality
truncation error

12, 141
15
57

90, 120
89
35
64
64

9
9
66
106
38
84
102
132
73
85
81
16
9
9
20
38
26
34
112
57
107
17
60

90, 120
89
91
94
57
67
80
10
78
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a HL Topic MATHEMATICS HL (Option): Calculus

S .\ FM Topic 5

for use with
IB Diploma Programme

First edition - 2015 third reprint

The following erratum was made on 27/Feb/2017

page 55 SECTION I DECREASING AND INCREASING FUNCTIONS, Last line before Example 20 should specify:

Similarly, for any negative continuous function which is increasing on [a, oo[,

o0

L=< [ wass S+ -v.

1=a i=a
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MATHEMATICS FOR THE INTERNATIONAL STUDENT

Mathematics HL (Option):
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FM Topic 5

a‘ HL Topic MATHEMATICS HL (Option): Calculus

for use with

IB Diploma Programme

First edition - 2015 second reprint

The following errata were made on 14/Nov/2016

page 106 SECTION M Example 47, solutions to parts ¢ and d should read:

¢ y=ce® —1 is a general solution to the differential equation.

the gradient of the tangent to the particular
solution y =3e** —1 at (0, 2), is 9.

The particular solution passes through (0, 2), so 2= ce3* — 1

c=3
the particular solution is y = 3e3* — 1
d H_343
dx
at the point (0, 2), dy =3+3%x2=9
X

2

-2
the equation of the tangent is h T
y—2 h
Y¥—2_9 _
z—0 2
y =9z +2 y=9x + 2 Y

page 114 SECTION N Example 53, first line of solution should read:

Since OP = PQ, triangle OPQ is isosceles. Hence [PA]
is the perpendicular bisector of [OQ)].

The following errata were made on or before 09/Dec/2015

page 171 Worked Solutions EXERCISE K.1, Question 1 d had an invalid first step, replace whole solution with:

(1 1
1 d Suppose Z — — — | converges
n

n=1 n
X /1 1 ) 1 > 1
Z - — = +Z—=Z— converges
2 2
n=1 (TL n n=1 n=1 n
This is false i ! ! ) diverges
-— — Y .
n=1 n n2 €




% HAESE MATHEMATICS ERRATA
MATHEMATICS FOR THE INTERNATIONAL STUDENT

Mathematics HL (Option):
Calculus

a‘ HL Topic MATHEMATICS HL (Option): Calculus

S\ M Topic5

for use with

IB Diploma Programme

First edition - 2014 initial print

The following errata were made on or before 18/Aug/2015

page 19 EXERCISE B.3, Question 3 ¢ was bad. Replace with 3 d and add Question 4:

3 Use the Squeeze Theorem to prove that lirr%) g(z) =0 for:

1
4 a Use the Squeeze Theorem to prove that  lim e(fﬂf) sinz = 0.

z—0+

1
b Explain why 111% e(_fr> sinz does not exist.
Tr—

page 34 SECTION F ROLLE'S THEOREM, Rolle's Theorem doesn't require f(a) = f(b) = 0:

ROLLE’S THEOREM

Suppose function f: D — R is continuous yA
on the closed interval [a, b], and differentiable
on the open interval ]a, b|.

If f(a) = f(b), then there exists a value
c € ]a, b[ such that f/(c) =0. -

Proof of Rolle’s theorem:

Since f is continuous on [a, b], it attains both a maximum and minimum value on [a, b].
If f takes values greater than f(a) on [a, b], let f(c) be the maximum of these.

Now f(b) = f(a) and f(c)> f(a), so c€]a,b].
Since f is differentiable at ¢, f must have a local maximumat z=c. ... f'(c)=0

Similarly, if f takes values less than f(a) on [a, b], let the minimum of these be f(c).
It follows that f has a local minimum at x = ¢, and therefore f/(c) = 0.

Finally, if f(z) = f(a) forall x € [a, b] thenclearly f/(c)=0 forall c€]a,b].

By taking f(a) = f(b) = 0, Rolle’s
theorem guarantees that between any two

. . . A lemma is a proven
zeros of a dlffereptlable fqnctlon f there et e vkt el
is at least one point at which the tangent on to a larger result.
line to the graph y = f(z) is horizontal.
A

Rolle’s theorem is a lemma used to prove
the Mean Value Theorem.

page 49 EXERCISE H question 8, should ask for definite intervals within the domain of F(x):

8 Let F(z)= / Cos(etz) dt, = >1. Find exactly:
1
b F'(2) ¢ F'(Vinr) e F"(2)



page 61 SECTION J SEQUENCES, Remove Comparison Test for Sequences:

ON TEST FOR SEQUENCES

If {b,,} converges, then {a,} converges.

note: Counter example {a,} = 1,2,1,2,1,2, ... and {b,} =3,3,3,3, ...

page 147 Worked Solutions EXERCISE B.1 question 7 ¢, the limits do not exist:

7 ¢ y

f(x) does not approach any value as = — 0 from above or

below.
i lim f(z) DNE ii lim f(z) DNE
z—0— z—0
ili lim f(x) DNE
z—0

page 149 Worked Solutions EXERCISE B.3 question 3 d becomes 3 ¢, and question 4 is added:

1
4 a As —1<sinz<1 and e® >0 forall z € R,

1 sinx 1
TISTISTI
e?® e’ e®
1 E
Butas ¢ — 0T, = - 00 and e* — oo
T
. 1 . 1
lim —— | = lim —| | =0
z—01 = z—0+ =
e e
(-=)
lim e\ ®/sinz =0 {Squeeze Theorem}
z—0t

1
b As —1<sinz<1 and e* >0 foral z €R,

sinx
T
x

€ e

|~
|~

N

<

8|~
8=

e
1

Now lim e ® =0 but lim e 2 isundefined.
z—0+ z—0—
_1
lim e ® is undefined.

z—0

g~

1

lim e * sinx is undefined.
xz—0

page 161 Worked Solutions EXERCISE H question 8, answers need to change according to question alteration:

x
8 F(:c):/ cos(et2)dt, z>1
1

b F'(2) = cos(e?)

¢ F’ ( lnﬂ') = cos (eln")
=cosm
=1

e F'(2) = —4e*sin(e?)



page 179 Worked Solutions EXERCISE K.3 questions 7 e and f, the series are conditionally convergent:

Inz
7 e Consider f(z)= ne

1
=r—Inzx 1-1
Now f/(z) =& = = x;m:

f'(z) < 0 forall x such that Inx > 1, thatis, x > e

1
Thus {ﬂ} is decreasing forall n > 3, n € ZT ... (1)
n

1
1 =
By I’Hopital’s Rule, lim —= = lim % =0
r—oo X n—o00
1
lim =2 =0, nezt .. Q)
n—oo
o] )n+l Inn
Z ——————— s convergent

-

n=

{Alternating Series Test}

o0
But Y. nn is divergent {Integral test}
n

1
(=)t nn

n

M8ﬁ

is conditionally convergent.

3
Il
=

f Let b, =

, then lim b, =0
nlnn n—oo

Now consider f(z) =

=[znz]"l, z>2
zlnz

—[zlnz] 2 <11n:c+:c (é))

—(lnz +1)

(z1lnz)? l’—>

So, f'(z) <0 forall z > 2 2

f'(@)

= by =

is decreasing for all n > 2, n € Z*t
nlnn

=" .
Thus Z is convergent.

— nlnn
o0
But Z is divergent {Integral test}
n—onlnn

= (=™ iy
Z is conditionally convergent.
a—y nlnn

page 184 Worked Solutions EXERCISE K.4 question 8, the last line of the solution should have correct interval:

oo ,nxn—l

23n
n:0n3

of convergence 3.

page 187 Worked Solutions EXERCISE L.2 question 2 a, should read:

converges for all « € [—3, 3[, and has radius

B e f@-en o SO
J'(@) = PO =
f”(z) f//( ):
fl”(m) = —e z, f///( )
By Maclaurin’s theorem,
"00)z2 "0)3
f@)=e = fO) + f O+ L (20,) +4 éf?’ +
(n) "
* % + Rn(z : 0)
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